
Information Technology

This book explains the various concepts of Azure in a logical and clear manner. ... The
book consists of 69 complete, end-to-end examples that provide step-by-step guidance on
implementing typical cloud-based scenarios. The examples cover a wide range of application
types and technologies with different levels of difficulties.

—Pierre Masai, CIO of Toyota Motor Europe

Zen of Cloud: Learning Cloud Computing by Examples on Microsoft Azure provides
comprehensive coverage of the essential theories behind cloud computing and the Windows Azure
cloud platform. Sharing the author’s insights gained while working at Microsoft’s headquarters,
it presents nearly 70 end-to-end examples with step-by-step guidance on implementing typical
cloud-based scenarios.

The book is organized into four sections: cloud service fundamentals, cloud solutions, devices and
cloud, and system integration and project management. Each chapter contains detailed exercises
that provide readers with the opportunity to develop valuable hands-on skills in cloud service
development.

•	Explains how to prepare for Microsoft Azure development and how to use
Microsoft Azure Management Portal

•	Provides best practices for designing cloud-based applications

•	 Includes online access to updated examples and answers to the exercises

Supplying comprehensive coverage of the Windows Azure cloud platform, the book provides a
practical understanding and powerful tips that readers can immediately apply to their own work—
making it ideal for cloud system developers, architects, and IT professionals. Organized into easily
digestible sessions, it is also ideal for use in instructional settings.

ISBN: 978-1-4822-1580-9

9 781482 215809

90000
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

Zen of Cloud

Learning Cloud Computing by Examples
on Microsoft Azure

Haishi Bai

Zen of Cloud

B
ai

w w w . c r c p r e s s . c o m

K22024

K22024 cvr mech.indd 1 7/15/14 9:08 AM

Zen of Cloud
Learning Cloud Computing by Examples

on Microsoft Azure

Zen of Cloud
Learning Cloud Computing by Examples

on Microsoft Azure

Haishi Bai

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140624

International Standard Book Number-13: 978-1-4822-1581-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Foreword ... xiii

SeCtion i CLoUD CoMPUtinG FUnDAMentALS

 1 Overview of Cloud Computing ..3
1.1 History .. 3
1.2 Essence of Cloud Computing .. 5

1.2.1 Elasticity ... 6
1.2.1.1 On and Off Mode .. 7
1.2.1.2 Rapid-Growth Mode .. 8

1.2.2 Availability ... 8
1.2.2.1 Fault Domain ... 9
1.2.2.2 Update Domain ...10

1.2.3 Scalability ..10
1.3 Microsoft Azure Overview ...11

1.3.1 IaaS (Infrastructure as a Service) ...11
1.3.2 PaaS (Platform as a Service) .. 12
1.3.3 SaaS (Software as a Service) ...13
1.3.4 Cost Calculation ..15

1.4 Preparing the Development Environment for Microsoft Azure...............................16
1.4.1 Subscribe to Microsoft Azure ...16
1.4.2 Install Software Development Kit ...16

1.5 Introduction of Microsoft Azure Management Portal ...16
1.5.1 Sign In ...17
1.5.2 Page Layout ...17

1.6 Summary ..19

 2 Building Websites on the Cloud ...21
2.1 Microsoft Azure Websites ...21
2.2 Website Deployment and Upgrade ...25
2.3 Integration with Source Control Systems... 32
2.4 Scaling of Websites .. 37

vi ◾ Contents

2.4.1 Vertical Scaling ... 37
2.4.2 Horizontal Scaling .. 39
2.4.3 Autoscaling ... 39

2.5 Migrating Existing ASP.NET Websites ... 40
2.5.1 Azure Websites Runtime Environment ... 40
2.5.2 Data Storage ..41
2.5.3 Session States ...41

2.6 Website Gallery ..41
2.7 Website Configuration... 42
2.8 Website Diagnostics and Monitoring ... 49

2.8.1 Website Diagnostics .. 49
2.8.2 Website Monitoring ...52
2.8.3 Custom Domain Names ... 54

2.9 Summary ..55

 3 Cloud Service Fundamentals ..57
3.1 Microsoft Azure Cloud Services ...57
3.2 Cloud Services and Roles ..61

3.2.1 Role .. 63
3.2.2 Cloud Service ... 63

3.3 Basic Steps of Cloud Service Deployment .. 64
3.4 Cloud Service Deployments and Upgrades .. 69

3.4.1 Incremental Updates (Update Domain Walk) .. 70
3.4.2 Simultaneous Updates .. 70
3.4.3 Multiple Deployment Environments .. 70

3.5 Instances and Load Balancing ..74
3.5.1 Instances ... 75
3.5.2 Load Balancing ..76

3.6 Configuration File and Definition File .. 79
3.6.1 Cloud Service Definition File (.csdef) ... 80
3.6.2 Cloud Service Configuration File (.cscfg) ..81

3.7 Summary ... 84

 4 Advanced Cloud Service ...85
4.1 Endpoint Types ..85

4.1.1 Input Endpoint ..85
4.1.2 Internal Endpoint ..85
4.1.3 InstanceInput Endpoint .. 86

4.2 Worker Role .. 88
4.2.1 Worker Role Application Scenarios ... 90

4.3 Inter-Role Communications .. 96
4.3.1 Options for Inter-Role Communication ... 96

4.4 Role Lifecycle .. 100
4.4.1 Process of Deploying and Launching a Role Instance 100
4.4.2 Role Instance Statuses ...101

4.5 Startup Tasks ..102

Contents ◾ vii

4.5.1 Defining Startup Tasks ..102
4.5.2 Startup Task Properties ...103

4.6 Diagnostics and Debug ..109
4.6.1 Debugging Locally ..109
4.6.2 Microsoft Azure Diagnostics ...109
4.6.3 IntelliTrace ..114
4.6.4 Monitoring Cloud Service ...119

4.7 Developer Community .. 123
4.8 Summary ..125

 5 Data Storage: Relational Database ...127
5.1 Microsoft Azure Data Storage Solutions .. 127
5.2 SQL Database Overview ..129

5.2.1 Differences between an SQL Database and an SQL Server129
5.3 SQL Database Management and Optimization ..139

5.3.1 SQL Server Management Studio ...139
5.3.2 Microsoft SQL Server Data Tools ..144
5.3.3 Dynamic Management Views ..145
5.3.4 Query Optimization ..146

5.4 Data Sync and Migration ...149
5.4.1 Data-Tier Application ..149
5.4.2 Data Sync ..152

5.5 Periodically Backup Your SQL Databases ...157
5.6 Use MySQL Database ..159

5.6.1 Microsoft Azure Store ..159
5.6.2 Purchasing MySQL Service ...160
5.6.3 Other Means to Run MySQL ..161

5.7 Summary ..161

 6 Data Storage: Storage Services ...163
6.1 Local Storage ..163
6.2 Overview of Microsoft Azure Storage Services ...164

6.2.1 Microsoft Azure Storage Account ..165
6.2.2 Provisioning a Windows Storage Account ...167
6.2.3 Storage Account Access Keys ...168

6.3 Using BLOB Storage ..170
6.3.1 BLOB Storage Overview ...170
6.3.2 Block BLOB and Page BLOB ..184
6.3.3 ETag and Snapshots ...187
6.3.4 REST API ...187
6.3.5 Shared Access Signature and Stored Access Policies188
6.3.6 BLOB Update, Copy, and Lease ..190
6.3.7 Error Handling ..190

6.4 Using Table Storage ..190
6.4.1 Table Storage Overview ...190
6.4.2 Optimizing Data Partition ..191

viii ◾ Contents

6.4.3 Query Table Data ... 204
6.4.4 Other Operations ... 204
6.4.5 Batch Operations .. 205
6.4.6 Dynamic Table Entities .. 205
6.4.7 Shared Access Signatures .. 206

6.5 Use Queue Storage .. 206
6.5.1 Queue Storage Overview .. 206
6.5.2 Programmatically Operate Queues ... 207

6.6 Monitor Storage Accounts ... 209
6.6.1 Configure Storage Service Monitoring...210
6.6.2 Cost of Service Monitoring ..211

6.7 Summary ..211

 7 Virtual Machines and Virtual Networks ..213
7.1 Microsoft Azure IaaS ..213
7.2 Disk Images and Virtual Disks .. 220
7.3 Virtual Machine Communications .. 228

7.3.1 Virtual Machine Endpoints .. 228
7.3.2 Virtual Machines under the Same Cloud Service 230

7.4 Virtual Networks ... 234
7.4.1 Virtual Networks Overview ..235
7.4.2 Point-to-Site Virtual Network .. 237
7.4.3 Site-to-Site Virtual Network ... 243
7.4.4 ExpressRoute .. 243

7.5 Summary ... 243

SeCtion ii CLoUD SoLUtionS

 8 Cloud Solution Architecture ..247
8.1 Client/Server ..247

8.1.1 Characteristics of Client/Server Architecture ...247
8.1.1.1 Benefits ..247
8.1.1.2 Shortcomings ...249

8.1.2 Client/Server Architecture on Cloud ...249
8.1.3 Multitenant System Design ...251
8.1.4 Migrating Client/Server Systems to Cloud ..253
8.1.5 Client/Server Systems on Microsoft Azure ...253
8.1.6 Mobile Clients .. 254

8.2 Browser/Server ... 254
8.2.1 Characteristics of Browser/Server Architecture ..255
8.2.2 Browser/Server Architecture on Cloud...256
8.2.3 Difficulties of Adapting an Existing Single-Tenant Browser/Server

Application for Multitenancy.. 264
8.2.4 Host Single-Tenant Systems on Microsoft Azure for Multiple Tenants267

8.3 n-Tiered Architecture .. 269
8.3.1 Characteristics of n-Tiered Architecture ... 269

Contents ◾ ix

8.3.2 n-Tier, MVC, and MVVM ...270
8.3.3 Microsoft Azure Service Bus Queue ... 273
8.3.4 Implementing n-Tiered Services on Microsoft Azure 277

8.4 Distributed System .. 284
8.4.1 Message-Based Connections ... 287
8.4.2 Relayed Connections ...291

8.5 Summary ... 299

 9 High-Availability Design ...301
9.1 Availability ...301
9.2 High-Availability Techniques .. 302

9.2.1 Redundancy ... 303
9.2.2 Load Balancing ... 303
9.2.3 Failover ... 303

9.3 Load Balancing and Health Probe ... 308
9.4 Competing Consumers ...310

9.4.1 Loose Coupling ...310
9.4.2 Dynamic Load Balancing ..311
9.4.3 Dynamic Scaling ...311
9.4.4 Failover ..311

9.5 Case Study: High-Availability Service Bus Entities ..312
9.5.1 Background ...315
9.5.2 Segmented Message Pipelines ..316
9.5.3 Paired Namespaces ..317
9.5.4 Conclusion ..317

9.6 Summary ..317

10 High-Reliability Design ...319
10.1 Reliability, Availability, and Maintainability ..319

10.1.1 Reliability ..319
10.1.2 Maintainability ... 320
10.1.3 Relationships between Availability, Reliability, and Maintainability....... 320

10.2 Embracing Failures ...321
10.2.1 Failures in Operation ...321
10.2.2 Failures in State Management..321
10.2.3 Failures in System Design and Implementation 322

10.3 Transient Errors ... 322
10.3.1 Transient Fault Handling Application Block .. 323

10.4 Design for Reliability... 326
10.4.1 Single Point of Failure ...327
10.4.2 Writing Reliable Code .. 328

10.5 Summary ..331

11 High-Performance Design ..333
11.1 Microsoft Azure In-Role Cache ..333

11.1.1 Overview .. 334
11.1.2 Deployment Options .. 334

x ◾ Contents

11.1.3 Cache Features ..338
11.1.4 Concurrency Modes ..339
11.1.5 Local Cache .. 341
11.1.6 Session State ... 341

11.2 Microsoft Azure Cache Service ...345
11.2.1 Overview .. 346
11.2.2 Cache Service versus In-Role Cache ... 346
11.2.3 Managing Cache Clusters on Microsoft Azure Management Portal 346
11.2.4 Memcache Support ... 347
11.2.5 Future of Azure Cache .. 348

11.3 Microsoft Azure CDN ... 348
11.4 Asynchronous Operations and Parallel Operations .. 349
11.5 Summary ..350

12 Claim-Based Architecture ..351
12.1 Claim-Based Authentication and Authorization ...352

12.1.1 Basic Authentication and Authorization Process353
12.1.2 Authentication and WIF ...354
12.1.3 Authentication Broker ...354

12.2 Introduction to Microsoft Azure AD ..356
12.2.1 Managing Microsoft Azure Tenants and Users ..357
12.2.2 Graph API ...367

12.3 Microsoft Azure AD New Features ..372
12.3.1 Azure Authentication Library ..372
12.3.2 Microsoft Azure Active Directory Premium ..372

12.4 Summary ..373

SeCtion iii DeViCeS AnD CLoUD

13 Mobile Service ..377
13.1 Mobile Service Overview ... 377
13.2 Push Notifications ... 386

13.2.1 Push Notification Overview ... 386
13.3 Scheduler and API ..393
13.4 Summary ... 396

14 Internet of Things ...397
14.1 IoT Overview .. 397

14.1.1 Radio Frequency Identification ... 398
14.1.2 Artificial Intelligence Equipment .. 398
14.1.3 Wearable Devices ... 398
14.1.4 Wireless Sensor Network .. 399

14.2 Devices and Cloud .. 399
14.2.1 Importance of Devices for Cloud .. 399
14.2.2 Importance of Cloud for Devices .. 400

14.3 Challenges of IoT ...401
14.4 .NET Micro Framework .. 402

Contents ◾ xi

14.4.1 .NET Micro Framework Overview... 402
14.4.2 .NET Gadgeteer Overview ... 405
14.4.3 Device Integration Sample Scenario ... 409

14.5 Summary ..416

SeCtion iV SYSteM inteGRAtion AnD PRoJeCt MAnAGeMent

15 Message-Based System Integration ..419
15.1 System Integration ..419

15.1.1 Integration by Data .. 420
15.1.2 Shared Business Functions .. 420
15.1.3 Enterprise Service Bus .. 420

15.2 Message-Based System Integration .. 422
15.2.1 Content-Based Routing .. 422
15.2.2 Priority Queue .. 423
15.2.3 Request/Response ... 426
15.2.4 Dead Letter Queue ... 427
15.2.5 Event-Driven Consumer ... 430

15.3 Advanced Message Queuing Protocol .. 433
15.3.1 AMQP Overview ... 434
15.3.2 AMQP Adoption .. 436

15.4 Advantages of Message-Based Integration ... 438
15.4.1 Loose Coupling .. 438
15.4.2 Dynamic Extension .. 441
15.4.3 Asynchronous Communication .. 441
15.4.4 Centralized Management ... 441

15.5 Summary ... 444

16 Source Control and Tests with Visual Studio Online.. 445
16.1 Create a Visual Studio Online Account ... 446
16.2 Source Control with Visual Studio Online .. 446
16.3 Create and Use Unit Tests ..452
16.4 Create and Use Load Tests ...459
16.5 Summary ..465

17 Scripting and Automation ..467
17.1 Microsoft Azure PowerShell Cmdlets .. 467

17.1.1 Preparing a Microsoft Azure PowerShell Cmdlets Environment 467
17.1.2 Managing Virtual Machines ... 469
17.1.3 Managing Cloud Services ..472
17.1.4 Managing Microsoft Azure Websites ...472
17.1.5 Other Cmdlets ..472

17.2 Microsoft Azure Cross-Platform Command Line Tools..472
17.2.1 Installing the Command Line Tools ..474
17.2.2 Getting Started with the Command Line Tools476

17.3 Microsoft Azure Management API .. 477
17.4 Summary ... 480

xii ◾ Contents

18 Azure and DevOps ...481
18.1 DevOps Overview ..481

18.1.1 Everything Is Code ..481
18.1.2 Everyone Is a Developer .. 482
18.1.3 Every Day Is Release Day ... 482

18.2 VM Agent and VM Extensions ... 483
18.2.1 VM Agent .. 483
18.2.2 VM Extensions ... 483
18.2.3 Custom Script Extension .. 484
18.2.4 DSC, Puppet, and Chef .. 485

18.3 New Portal .. 486
18.4 Zen of Cloud ... 487

Bibliography ..489

xiii

Foreword

This book by Haishi Bai provides a detailed introduction to cloud computing, in general, and to
Microsoft Azure, in particular.

Haishi Bai has had an extensive and successful career in information systems, which brought
him from the Northeast of China to Beijing and then finally to Silicon Valley and to the Microsoft
Head Office in Redmond, Washington as a Microsoft Azure evangelist. His experience in the rise
and fall of e-business, boom of social networks, and rise of cloud computing provides him a deep
understanding of the pros and cons in cloud computing.

This book explains the various concepts of Azure in a logical and clear manner. It is divided
into four sections: cloud computing fundamentals, cloud solutions, devices and cloud, and sys-
tem integration and project management. Beginners can use this book as a guide in their jour-
ney through cloud computing. Experienced cloud developers can benefit from it by studying
specific scenarios. The book consists of 69 complete end-to-end examples that provide step-by-
step guidance on implementing typical cloud-based scenarios. The examples cover a wide range
of application types and technologies with different levels of difficulties. The book also provides
practical knowledge, tips and tricks that you can apply to your own work.

This book should provide invaluable help to IT managers who want to stay up to date, develop-
ers who want to implement applications using Microsoft Azure, as well as system engineers who
are looking to gain in-depth knowledge on cloud computing.

Enjoy the reading as I did and looking forward to your great contributions to this new world!

Pierre Masai
CIO of Toyota Motor Europe

iCLoUD CoMPUtinG
FUnDAMentALS

Cloud computing, as its name suggests, is to leverage cloud for computing workloads. These work-
loads are not new—we have been running applications and services on our workstations and data
centers for tens of years. Then why do we need cloud? What benefits are we getting by using it?
What are the new scenarios it enables? In this first section of the book, we first look back at the his-
tory of cloud computing, and then discuss some unique and exciting capabilities cloud computing
brings us. We also study the basics of getting your workloads on cloud using Microsoft developer
tools and services. From a developer’s perspective, you can view cloud as a huge resource pool where
you can pull out resources to support your application needs, and return the resources when you
are done with them. This resource usage model is the foundation of key cloud characteristics such
as elasticity, availability, and agility.

3

Chapter 1

overview of Cloud Computing

1.1 History
In August 1962, Joseph Carl Robnett Licklider published the famous paper “On-Line Man-
Computer Communication,” one of the first conceptions of the future Internet. In the paper, he
elaborated on how man would interact with the computer to accomplish various tasks. Not only
did he mention the widespread keyboard drag-and-drop operations but also predicted the future
of man–computer communication via natural languages. However, the main idea in this paper is
how to share the reliable storage and the superb computational capabilities of computers among
users in order to accomplish complicated tasks with an online collaboration. The conceptions
of resource sharing, dynamic interaction, and remote collaboration laid the foundation for the
Internet theory and depicted the preliminary blueprint for cloud computing.

In the past 50 years, although software architecture has evolved through several different
stages, from Mainframe to Client–Server, to Browser–Server, to Distributed System, and finally
to Cloud Computing (Figure 1.1), providing value-added services with optimized resource utiliza-
tion remains the theme of software system design.

In the time of Licklider, people concentrated on optimizing the utilization of limited resources
on the host systems because terminals had almost no processing power and all computing tasks
were carried out on the hosts. With the emerging wide spread use of personal computers, stor-
age capacities and processing power of client machines have been constantly increasing. As a
result, more computing and storage requirements can be satisfied directly on client machines.
Distributed systems pushed this idea to the extreme and eliminated the need of centralized servers.
Many phenomenal distributed systems and applications have emerged and prospered. However,
on the flip side, development, maintenance, and management of distributed systems have also
shown unprecedented complicity. Then, as browsers and the Internet mature, computing and
storage are again pushed to the server side. Browsers replace desktop programs and become the
mainstream user front end. Is this a return of mainframe mode? In order to answer this question,
we cannot miss mentioning Salesforce.

In 1999, 37-year-old Marc Benioff resigned from his senior vice presidential position at
Oracle to found Salesforce. He put forward, for the first time in history, the concept of Software-
as-a-Service (SaaS). The SaaS mode shifted the paradigm of software applications in enterprises.

4 ◾ Zen of Cloud

With SaaS, enterprises do not need to make huge investments to build up and maintain system
infrastructures. At the same time, they are no longer obligated to distribute and maintain a
huge number of client software. With simple mouse clicks in browsers, users can easily access
required functionalities anytime, anywhere, from any connected machines. SaaS helps enter-
prises to realize that they do not have to put up with the infrastructural costs in order to enjoy
the required services. This is a fundamental change in the way software is delivered and con-
sumed. Therefore, SaaS is not a return of mainframe, but a significant milestone in the history
of cloud computing.

However, services provided by Salesforce were limited to customer relation management
(CRM) and sales. Naturally, people started to reflect on one question: Is it possible to create a
general platform, where more services can be hosted and made available to more users? Obviously,
it is not an easy job to design, construct, and maintain a universal platform that supports various
services and is shared by millions of users. This kind of platform will need to provide not only
limitless computing power, efficient and reliable storage, unprecedented network throughputs,
and world-class security, but also attractive tariffs to attract more users to complete the transition
from using software to consuming service. Facing such a huge hurdle, only few enterprises in the
world have the technical and financial power to conquer it.

Amazon became undoubtedly the pioneer in cloud computing. In 2006, Amazon released its
elastic computing platform—the EC2. With this release, Amazon claimed the title of the first
open cloud platform provider in the world. As a well-experienced tycoon in Internet sales, thanks
to years of experience in managing large-scaled data and in dealing with business characterized by
large volume with low profit, Amazon had all the necessary ingredients to create such a platform.
Soon many enterprises got to know of the platform and began to migrate their existing systems
to EC2. Amazon promptly enjoyed its newly gained prosperity and almost became the synonym
of cloud computing.

Another company that contributed to the development of cloud computing is Apple of Steve
Paul Jobs. This company seems to have less to do with cloud computing but it boosts cloud devel-
opment in its own way. Almost overnight, Apple swept the electronic market with the iPhone
and iPad and forced personal computers to abdicate from the end user market. Mobile devices

Devices
and cloud
computing

Distributed
systems

Client/
server

Mainframe

Server evolution

Cl
ie

nt
 ev

ol
ut

io
n

Browser/
server

Figure 1.1 evolution of system application structure.

Overview of Cloud Computing ◾ 5

have been replacing laptops not only in handling personal matters, but also gradually in handling
day-to-day business. The demand for constant access to business functions via various devices is a
new challenge to IT departments in enterprises. How to provide secured access? How to keep data
synchronized? How to integrate with existing systems? How to handle authentication and autho-
rization? Faced with these challenges, IT departments turned to cloud computing for solutions.
Various cloud services began to be adopted by enterprises in order to be able to provide anytime,
anywhere accesses from mobile devices. From simple data storing and file sharing to emailing and
agenda management, to remote cooperation, to business flow integration, and to internal social
network, cloud services are playing increasingly important roles in the daily business with the help
of mobile devices.

In 2008, Microsoft announced its participation in the cloud platform business in the PDC
event in Los Angeles, and Microsoft Azure entered the landscape of cloud computing. Microsoft’s
commitment to the cloud platform is comprehensive. The company has committed tremendous
resources to provide a world-class cloud platform by developing cloud technologies and construct-
ing world-class large-scale data centers. In addition, Microsoft has also been transferring its own
core businesses, such as Office, to the cloud platform. Meanwhile, thanks to its rich experiences in
enterprise applications, Microsoft actively pushes the integration of public cloud with on-premise
systems. The so-called Hybrid Cloud not only protects customers’ existing investment, but also
enables them to migrate their existing systems to the cloud platform in a smooth and steady way.
In terms of development support, Microsoft remains loyal to its tradition, which is to put the
demands of developers first. With Visual Studio, Visual Studio Online, and Microsoft Azure
SDKS, Microsoft provides a consistent experience for developers regardless of the types of projects
they work on. In addition to providing first-class support to .Net framework on Windows systems,
Microsoft Azure is also an open platform that fully supports third-party systems, languages, and
tools such as Linux operating systems, PHP, Node.js, Java, Ruby, and Python, as well as various
third-party software like MySQL, MangoDB, and GIT.

Cloud computing is only at its starting point in the history of computer and software devel-
opment. As more enterprises and individual users realize the advantages of cloud computing, the
development of cloud computing is accelerating immensely. It is predicated that the cloud com-
puting market will reach a scale of US$240 billion by 2020. So right now is the perfect moment
to join the movement of cloud computing.

1.2 essence of Cloud Computing
What on earth is the cloud we are talking about? One way to look at the cloud is to think of it as
an immense resource pool for storage and computing. Users can access this resource pool from
anywhere and at any time to fulfill their needs. The consumers of the cloud do not need to under-
stand any details behind the scenes. As long as they obtain respective endpoint for a service, they
can enjoy this service instantly (see Figure 1.2). In other words, service consumers do not need to
care about how the service is put together by the provider and how it’s made available; they can
simply subscribe to the service and use it. This is the fundamental difference in the traditional on-
premise solutions, whereas service consumers act as service providers at the same time. They have
to purchase and maintain servers and other equipment, and keep the services in a healthy state
before they can consume the services. On the cloud platform, service consumers simply acquire
new services by subscribing to them, and often follow a pay-as-you-go mode to pay for service
consumption without any burdens to maintain the services.

6 ◾ Zen of Cloud

Services running on the cloud are called Cloud Services, which can be categorized into two
types: computing and storage, the so-called cloud computing and cloud storage. Of course, if we
consider all cloud services as callable functions on the cloud, then all cloud services possess the
attribute of “computing.” Therefore, sometimes we do not distinguish the two service types and
use “cloud computing” as a generic term to describe both service types.

Note: Service Providers and Service Consumers
Cloud platforms provide necessary services for developers to develop cloud services on
them. So within this context, cloud platforms are service providers and service developers
are service consumers. However, after service developers have developed and deployed cloud
services on the cloud, they become service providers and the end users of the service are ser-
vice consumers. Readers should pay attention to the different meanings of “service provider”
and “service consumer” in different contexts.

In order to fully understand the advantage of cloud computing, we must focus on two main
aspects: the agility and the added value. In the following text, we will summarize some of the
characteristics of the cloud and see how they help service consumers to reduce cost, increase agil-
ity, and gain added values.

1.2.1 Elasticity
A key characteristic of the cloud is elasticity. Elasticity means that service consumers can increase
or decrease the subscribed service level at any time per business demand. A user renting storage
on the cloud can, for instance, either increase his or her storage from 100G to 100T, or reduce
it to 100M at any time. On the other hand, a website provider can switch between one or more

Client Client

Figure 1.2 Cloud = resource pool + endpoints.

Overview of Cloud Computing ◾ 7

servers to run his or her website as per the site’s actual load. Such switches can be done within
hours or even minutes.

This kind of flexibility is unreachable for a traditional data center. In a traditional data center,
provisioning a server means going through planning, approving, purchasing, installing, testing,
tuning, etc.—a long process that usually takes weeks or months. Although server virtualization
helps to simplify and speed up the process greatly, enterprises still need complicated processes and
close coordination among departments if they want to distribute or reallocate resources to satisfy
ever-changing needs. Furthermore, because there are always certain rules to follow when it comes
to disposing fixed assets, it is never a small issue to give up a server either. As a result, traditional
data centers suffer very often from either too many or too few servers. The ideal allocation of
resources to each department is often a very difficult goal to reach. In short, the capacity of a tra-
ditional data center is often out of sync with the pace of business development.

The cloud saves us from this situation. Service consumers can get extra storage and processing
power from the cloud platform at any time, and they can return the resources that are no longer
needed just as easily. Service consumers pay only for what they are actually using and nothing
more. The root of elasticity comes from separation of services and underlying infrastructure. With
the separation of concerns, a service becomes a pure logical definition that can be replicated and
instantiated on any number of available servers (given that the servers satisfy specific constraints
imposed by the service definition). Because servers are not permanently bound to particular ser-
vices, they can be repurposed as needed to provide support to other services.

Elasticity is not only a big help to IT cost reduction, but also a great boost to business agility.
Now let us look at two typical scenarios of workload changes and find out how elasticity helps
service consumers to control cost efficiently without degrading service levels.

1.2.1.1 On and Off Mode

Under on and off mode, a system stays in either of the two distinctive statuses: active or inactive.
In active mode, the system has to support a large number of users, while in inactive mode, the
system needs to do almost nothing. A typical example for this kind of system is the online registra-
tion system of universities. Before the new semester begins, students are obliged to register for the
classes within a given time period. During this period, the system becomes very busy. However,
during the semesters, few students would need the system. Such a workload change pattern is
depicted in Figure 1.3.

In traditional data centers such systems stay either extremely busy or extremely idle. Users suf-
fer from slow responses or even system crashes during busy periods, while data centers suffer from
a big waste of resources during idle periods. Now, with the cloud platform solution, users can rent
more servers in busy periods and return the surplus after the peak.

Inactive period Active periodActive period

W
or

kl
oa

d

Figure 1.3 Workload changes: on and off mode.

8 ◾ Zen of Cloud

1.2.1.2 Rapid-Growth Mode

A rapid-growth mode means that the workload of a system increases dramatically during a short
period of time. This rapid increase in workload is often not foreseen and thus exceeds the original
investment in IT. Therefore, systems cannot meet the demand of the rapidly growing business.
Companies generally pursue the rapid growth of their business, especially the start-ups. But if
a company staggers due to system restrictions, it would be an unforgivable mistake. Such risks
do exist in the traditional data centers. However, the options to mitigate the risk are quite lim-
ited: either start-ups are able to make very accurate forecasts or they make large investments in
IT in preparation for possible spikes. Obviously, neither can be a viable solution in most cases.
Figure 1.4 shows how business cannot reach its deserved level due to system restriction toward
workload.

Cloud platform is a good solution for start-ups. They can rent minimum resources to jump
start at the beginning and rent more resources when business increases. The pool of resources
on the cloud is so vast that it seems limitless for these start-ups. No matter how fast the busi-
ness grows, cloud platforms can easily satisfy the increasing needs. Utilizing cloud platforms as a
powerful backbone, start-ups can start small and stretch out their business to the utmost. This is
definitely a smart and effective way of starting new businesses.

There are of course other modes of workload changes. Some workloads vary with seasons,
such as those for online retailers; some others have sudden spikes, such as web traffic generated by
breaking news. Being able to quickly and efficiently handle fluctuations in workloads is the biggest
advantage of using cloud platforms.

Note: In this book, we focus on the technical aspect of the elasticity and the scalability.
From the business perspective, the elasticity of the cloud reflects the agility of the company
adapting itself to the market changes.

1.2.2 Availability
Simply speaking, the availability of the cloud means that users can access the services hosted on
the cloud at anytime, anywhere. In other words, cloud services must be “usable” almost at any time
and from anywhere. Availability seems simple, but it is actually decided by many related aspects of
design, development, and operation of cloud platform and cloud service.

When we say that a platform or a service is available, it implies that this platform or service
functions properly. Obviously, if a cloud platform or cloud service cannot maintain a healthy run-
ning status, its availability cannot be guaranteed. There are no shortcuts for availability. Generally

W
or

kl
oa

d

Figure 1.4 Rapid growth of workload.

Overview of Cloud Computing ◾ 9

speaking, system availability is realized by redundancy and backups. Any cloud platform provid-
ers would, for the sake of saving cost, avoid choosing servers with very high configurations but
take commodity hardware. Therefore, it is unavoidable to encounter hardware failures. In order
to guarantee system availability, large quantities of redundant and automatic backups are config-
ured inside these cloud platforms. For example, a user who subscribes to a Microsoft Azure SQL
Database automatically gets two hot backups for each of the servers he acquires. When the main
server fails, one of the backup servers will replace it automatically to guarantee system availability.
Microsoft Azure thus can guarantee 99.9% availability in the user’s databases. The different levels
of availability are defined and enforced by Service Level Agreements (SLAs).

Note: About Service Level Agreement
Microsoft Azure provides different SLAs for its services. Availability is generally expressed
as a percentage. For example, the availability level of your subscribed service from Microsoft
Azure can be shown by the following formula:

Availability

Total subscribed time unavailable time

Total subs
=

−

ccribed time

Note that this formula is only a schematic expression. Different services have different meth-
ods of calculation and may have certain restrictions. Further information is available at
http://www.windowsazure.com/en-us/support/legal/sla/.

It might be safe to claim that no software is 100% bug-free. Services on the cloud platform may
encounter various problems. Therefore, cloud platform providers need not only to monitor and
handle hardware problems, but also to check and tackle software defects. Microsoft Azure pro-
vides comprehensive support for telemetry, as well as the ability to automatically recover failed ser-
vices. Autorecovery is an excellent example of a value-added service provided by Microsoft Azure.
Without cloud service developers writing any extra code or performing any additional administra-
tive tasks, cloud services hosted on Microsoft Azure automatically gain the autorecovery capabil-
ity. In Section II of this book, we further discuss the mechanism of autorecovery.

Before wrapping up this section, we still need to clarify two concepts related to availability:
fault domain and upgrade domain.

1.2.2.1 Fault Domain

Fault domain refers to a group of resources that could fail at the same time. For example, a per-
sonal computer can be regarded as a fault domain, because all its components—CPU, memory,
and hard disk—depend on electricity to work. If power supply fails, all resources stop working
at the same time. In a data center, a group of severs on the same rack is a fault domain because
they share the same power supply or cooling system. Fault domain is a very important concept
in containing errors and providing high availability. Obviously, if you switch off your PC, you
would expect other household electronics to continue to work. In other words, failure in one fault
domain should not affect other fault domains. Therefore, Microsoft Azure allocates instances of
your hosted services into different fault domains to improve service availability. Because it is rare
to have two fault domains to stop functioning at the same time in a world-class data center such

10 ◾ Zen of Cloud

as that provided by Microsoft Azure, Microsoft Azure can guarantee high availability when you
have multiple instances of your services.

1.2.2.2 Update Domain

Update domain is a logical concept. It refers to a group of resources that can be updated simultane-
ously during system upgrades. When Microsoft Azure updates a service (no matter whether this
service belongs to Microsoft Azure or is published by a user), it will not update all resources needed
by this service at the same time, but rather by group. This is to guarantee that at least one group of
resources remains available to handle users’ requests during update. This approach is called rolling
upgrades or zero-down time upgrades. Of course, system throughput will be influenced briefly
during upgrade, but in general the service remains in the state of “available.”

Note: In Microsoft Azure, rolling upgrades are sometimes also called Upgrade Domain
Walk because upgrade domains are updated one by one. Microsoft Azure also supports other
upgrade approaches, such as switching between different deployments. We will discuss this
topic further in Section II.

From the earlier discussion, we can conclude that Microsoft Azure fully supports availability at
business level, technical level, and operational level. In the later part of this book, we will also talk
about techniques and tools for high-availability design.

1.2.3 Scalability
Scalability is an indicator of how well a system can support its users in terms of both quantity and
quality.

Quantity indicates the capacity of a system to deal with workload changes. In traditional data
centers, this kind of scalability is often achieved by upgrading system hardware. For example,
when a database becomes a bottleneck, we can add more memory or CPUs to improve the capacity
of the server. The throughput of the system is thus increased to serve more users. This is called scal-
ing up or vertical scaling. The advantage of vertical scaling lies in the easy and low-risk execution
because we do not have to modify the code in most of the cases, but change the hardware only.
Still, there are two restrictions. First, vertical scaling is not limitless. Any server obviously has lim-
ited physical space for memory and storage expansions. It is not possible to improve the capacity
of a server without a limit. Virtual servers have more restrictions in this aspect. Generally, cloud
providers have virtual machines in several sizes for users to choose. If the highest configuration
still cannot meet the demand, we have to apply other scaling methods, such as horizontal scaling.
Furthermore, because vertical scaling reconfigures the existing servers, the servers often need to
be shut down during upgrades, causing service interruptions.

A common scaling method on the cloud is scaling out, also referred to as horizontal scaling.
Unlike vertical scaling, horizontal scaling does not modify the existing configurations of the serv-
ers, but adjusts system capacity by increasing or reducing the number of servers. Take a database
server as an example, where higher data-processing power can be achieved by adding more severs.
For instance, if a database server can handle 10,000 transactions per second, theoretically two
servers can handle 20,000 businesses per second. When several servers share the workload of one
system, it is called load balancing, which will be further discussed in Section II.

Overview of Cloud Computing ◾ 11

Horizontal scaling provides some advantages over vertical scaling. First, it is not restricted by
the hard limit of a server or a virtual machine. When you want to increase the throughput of a
system, all you need to do is add more severs. The workload is then distributed equally to all the
servers by means of load balancing. Second, it is also easy to reduce the throughput of a system
by simply returning the obsolete servers to the cloud platform provider. Users thus avoid unneces-
sary rental cost. Last but not the least, the process of adding or reducing servers does not affect
the running of other servers, avoiding unnecessary service interruptions. However, not all systems
can be easily scaled in this way because horizontal scaling has some extra requirements in system
structure. We shall further discuss this point in Section II.

In terms of quality, scalability means that a service can maintain an acceptable performance
level when dealing with a large number of concurrent users. Users will not tolerate a slow service,
especially when there are many alternatives. Therefore, the scalability of a system is closely linked
to its performance. Concepts, tips, and tools of system performance are discussed in Section II.

1.3 Microsoft Azure overview
Microsoft Azure is a flexible, reliable, and open environment for developing and hosting SaaS solu-
tions. We can understand Microsoft Azure from three levels: IaaS, PaaS, and SaaS.

1.3.1 IaaS (Infrastructure as a Service)
IaaS is the hardware provided by a cloud platform provider to run users’ applications, including
infrastructure (power supply, cooling system, ventilation, etc.), hardware devices (network, rack,
storage, servers, etc.), and server virtualization. Users can rent these virtual servers directly from
Microsoft Azure. Developers are free from the trifles of managing and maintaining hardware and
can concentrate on the design and development of their applications and services.

Renting servers is much cheaper and quicker than setting up servers by yourself. Users can
obtain high computing power at a small cost. On the other hand, users can return the obsolete
capacity to the provider at any time to keep the cost to a minimum.

Microsoft Azure provides a number of virtual server configurations, as shown in Table 1.1.

Note: The data in Table 1.1 are taken from http://msdn.microsoft.com/en-us/library/
windowsazure/jj156003.aspx. Available virtual machine choices may be different in your
region, and are subject to change over time.

Microsoft Azure also provides various prebuilt images for easy virtual machine creation. At the
time of writing this work, available images include the following:

 ◾ Windows Server 2012 Datacenter
 ◾ Windows Server 2012 R2 Preview
 ◾ Windows Server 2008 R2 SP1
 ◾ SharePoint Server 2013 Trail
 ◾ SQL Server 2014 CTP1 Evaluation On WS 2012
 ◾ SQL Server 2014 CTP1 Evaluation On WS 2012 R2

12 ◾ Zen of Cloud

 ◾ SQL Server 2012 SP1 Enterprise On Win2012
 ◾ SQL Server 2012 SP1 Enterprise On Win2K8R2
 ◾ SQL Server 2012 SP1 Standard On Win2012
 ◾ SQL Server 2012 SP1 Standard On Win2K8R2
 ◾ SQL Server 2008 R2 SP2 Enterprise On Win2K8R2
 ◾ SQL Server 2008 R2 SP2 Standard On Win2K8R2
 ◾ SQL Server 2008 R2 SP2 Web On Win2k8R2
 ◾ BizTalk Server 2013 Enterprise
 ◾ BizTalk Server 2013 Evaluation
 ◾ BizTalk Server 2013 Standard
 ◾ Visual Studio Ultimate 2013 Preview
 ◾ openSUSE 12.3
 ◾ SUSE Linux Enterprise Server 11 SP2
 ◾ SUSE Linux Enterprise Server 11 SP3
 ◾ Ubuntu Server 12.04 LTS
 ◾ Ubuntu Server 12.10
 ◾ Ubuntu Server 13.04
 ◾ OpenLogic CentOS 6.3

From this list, we see that Microsoft Azure provides virtual machine images based not only on
Windows systems but also on popular Linux variations. For Linux images, you have the same level
of technical support as you get for Windows-based systems. This shows that Microsoft Azure is a
real open system.

1.3.2 PaaS (Platform as a Service)
Built on IaaS, PaaS provides a software environment for service developers to develop and run
their applications on the cloud. PaaS hides infrastructural details from the application developers,
so that they can better concentrate on the development of their business logics. IaaS users still
have to manage their virtual servers, such as upgrade operation systems and install patches. On
the contrary, PaaS users do not directly work on virtual servers. They work at a higher, abstract

table 1.1 Microsoft Azure Virtual Machine Choices

Size
Number of
CPU Cores Memory

Temporary
Storage

Bandwidth
(Mbps)

Maximum
Numbers of Data
Disks (1 TB Each)

Extra small Shared 768M 20G 5 1

Small 1 1.75G 70G 100 2

Medium 2 3.5G 135G 200 4

Large 4 7G 285G 400 8

Extra large 8 14G 605G 800 16

A6 4 28G 285G 1000 8

A7 8 56G 605G 2000 16

Overview of Cloud Computing ◾ 13

service level. They define their services and specify the kind of environment the services need, but
they do not actually manage the environment, which is taken care of by the cloud platform. For
example, a service developer can specify that the service needs two small Windows Server 2008
R2 servers to run. When this service is deployed, Microsoft Azure will build and maintain two
virtual servers according to this abstract definition. Microsoft Azure manages every aspect of these
virtual machines, including the following:

 ◾ Installing an operating system and building up the necessary environment to host the
service

 ◾ Updating the operating system and installing security patches
 ◾ Managing network configurations such as mapping ports and setting up firewall rules
 ◾ Monitoring the health of virtual servers and performing autorecovery when necessary

PaaS separates cloud services from underlying infrastructure. This is a very important abstrac-
tion layer that enables cloud services to be efficiently managed by Microsoft Azure. Service
developers do not need to care about how and where these virtual machines are provisioned and
managed. Coming back to the previous example, this application needs two virtual servers. Let
us suppose that the physical server on which one virtual server is hosted breaks down; Microsoft
Azure will search for another healthy physical sever and build up a new virtual server on it, and
then transfer the application to the new server. This process is totally transparent to the service
developer.

Microsoft Azure provides two platform services for cloud service developers: Microsoft Azure
Websites and Microsoft Azure Cloud Service. Users can create and run websites very quickly by
using Microsoft Azure Websites, while Microsoft Azure Cloud Service supports the development
and operation of all kinds of cloud services. These two services will be explained in detail in
Sections II and III. Why does Microsoft provide these two different platform services? From the
cloud computing viewpoint, a website is nothing but a special kind of cloud service, which exposes
an endpoint based on HTTP/HTTPS to its clients (usually browsers) to access its functionalities
(to get HTML responses). Microsoft Azure Websites is an optimized platform for this special
kind of cloud service. On the other hand, Microsoft Azure Cloud Service is the general platform
for developing and operating cloud services. In other words, both Microsoft Azure Websites and
Microsoft Azure Cloud Service are PaaS offerings, as they both hide infrastructural details from
developers. It is just that Microsoft Azure Websites is optimized for websites, which is one type of
cloud service.

Note: Website is a kind of cloud service.

1.3.3 SaaS (Software as a Service)
SaaS means that software is provided to end users as a hosted service. End users do not have to
install or maintain any hardware or software environment to support the service. Instead, they
simply access required functionalities via endpoints provided by service providers. Among these
services, some are provided by Microsoft Azure, such as storage service, SQL Database, caching
service, and access control service. Other services are provided by third parties such as MongoDB,
MySQL, and SendGridd. More importantly, cloud service developers can also host their services

14 ◾ Zen of Cloud

on Microsoft Azure and provide these services to end users in the form of SaaS. To a great extent,
the ultimate goal of Microsoft Azure is to facilitate cloud service developers to develop and host
their cloud services on it. Design, development, and operation of SaaS are the main focus of this
book.

Microsoft Azure provides cloud service developers with many building block services. These
building blocks are provided to developers and users in the form of SaaS. These services can be
accessed not only by using client libraries, but also by using REST-styled calls. We will explain
many of these services in detail later in this book. Here we provide a quick overview of each of
these services:

 ◾ SQL Database
 SQL Database can be simply considered as “SQL Server on the Cloud.” Users can cre-

ate and use SQL Database instances on Microsoft Azure at any time without needing
to acquire and manage any physical database servers. Microsoft Azure SQL Database is
highly compatible with Microsoft SQL Server as they both use the same Tabular Data
Stream (TDS) protocol. Many existing SQL Server databases can be directly migrated to
SQL Database. In addition, SQL Server data-accessing techniques such as ADO.Net and
Entity Framework are applicable to Microsoft Azure SQL Database as well. Of course,
there are still some differences between SQL Server and SQL Database. For example,
SQL Database supports data sharing, which reflects the common scaling-out philosophy
of the cloud.

 SQL Database will be further discussed in Chapter 5.
 ◾ Storage Services

 Microsoft Azure provides a rich set of NoSQL storage, including table storage, BLOB stor-
age, queue storage, and virtual drives. A table is used to store large amounts of unstructured
data; BLOB is used to store large amounts of text or binary data such as video, audio, and
images; Queue Storage provides message queue service; and virtual drives simulate NTFS
disk volumes for cloud services.

 Storage functions are further discussed in Chapter 6.
 ◾ Caching Service

 Microsoft Azure has two flavors of Cache Services: Role-Based Caching, and Microsoft
Azure Caching. Role-Based Caching clusters are self-hosted by cloud services. Because the
cache clusters are collocated with cloud service roles, they can provide optimum perfor-
mance with minimum overheads. Microsoft Azure Caching is a hosted service, so you do
not need to host the cache clusters yourself. At the same time, You subscribed Microsoft
Azure Caching clusters are dedicated to your services; hence, you have more control over
cluster behavior and throughput.

 We discuss the concept of roles in Chapter 3, and introduce caching service in
Chapter 6.

 ◾ Service Bus
 Service Bus provides various message-based services for system integration, loose coupling,

hybrid cloud, and push notifications, including message queues, topics and subscriptions,
notification hubs, and relayed connections.

 Different functionalities of Service Bus are covered in Chapters 4, 6, 9, 10, 11, and 15.
 ◾ Mobile Service

 Mobile Service provides a series of common services required by mobile applications, such
as data storage, scheduled tasks, and push notifications. It provides a turnkey solution for

Overview of Cloud Computing ◾ 15

mobile application developers so that they can focus on building up unique values of their
applications without needing to dig into details of backend services.

 We discuss Mobile Service in Chapter 8.
 ◾ Media Service

 Media Service provides comprehensive support for applications to ingest, encode, manage,
and share media. Users can upload media documents to Media Service, which encodes,
encrypts, and broadcasts media streams to end users. Due to the space restriction of this
book, no further discussions will be made on this topic.

 ◾ Workflow Service
 Built on Windows Workflow Foundation (WF), this service allows cloud service developers

to create, execute, and manage workflows on Microsoft Azure. No further explanation will
be made on this topic due to the space restriction of this book.

 ◾ HDInsight
 HDInsight provides the capability of managing dynamic Apache Hadoop clusters to handle

Big Data scenarios on Microsoft Azure. Big Data is currently a hot topic and is pursued and
admired widely. However, it is too big a topic to be fully covered by this book.

 ◾ Active Directory Access Control
 Active Directory Access Control Service provides strong support for authentication and

authorization. Not only can you project users and groups in local Active Directory trees to
directory tenants on cloud, but also integrate with other identity providers such as Windows
Live, Google, and Yahoo via standard protocols like ws-Federation and OAuth. In addition,
because Microsoft Office 365 also uses Microsoft Azure Active Directory for authentication,
if your services use Microsoft Azure Active Directory as well, you can potentially tap into
the huge Office 365 user base via Single Sign-On.

 Active Directory Access control is discussed in Chapter 12.
 ◾ BizTalk Service

 Microsoft’s BizTalk is now available on Microsoft Azure as a service. BizTalk provides a
middleware for system integration. It can meet the requirements of complex system integra-
tion scenarios. No further explanation will be made on this topic due to the space restriction
of this book.

Note: Some documentation and web articles categorize all these services as PaaS because
they are part of the Microsoft Azure “platform.” This kind of categorization mixes up the
general meaning of “platform” and the special meaning of “platform” in PaaS. According
to the NIST definition of cloud computing, only services related to cloud service delivery
and deployment can be categorized as PaaS. So, services such as BizTalk Service and Media
Service should be categorized as SaaS.

On a different note, all listed services are available at the time of writing this book.
Obviously, this list will grow steadily as time passes by.

1.3.4 Cost Calculation
Costs of using services on Microsoft Azure are rather low and some of the services are free of
charge. For cost estimation and calculation, the best place to start is by using the Microsoft Azure
online cost calculator at http://www.windowsazure.com/en-us/pricing/caclulator/?scenario=full.

16 ◾ Zen of Cloud

1.4 Preparing the Development environment for Microsoft Azure
Microsoft provides a comprehensive, efficient, and consistent development environment for cloud
service development on Microsoft Azure. For readers who are familiar with Visual Studio and .Net
Framework, it is quite easy to work with Microsoft Azure. For developers using other languages,
Microsoft has also prepared corresponding SDKs. You will need three things to start your applica-
tion development on Microsoft Azure:

 ◾ A Microsoft Azure subscription
 ◾ A Microsoft Azure SDK
 ◾ An integrated development environment (IDE) such as Visual Studio

Note: Microsoft Azure SDK supports Visual Studio 2010 SP1, Visual Studio 2012, Visual
Studio 2013, and higher, including the free express editions. If you have not purchased
Visual Studio, you can download the free Visual Studio 2012 Express for Web from the
official Microsoft site to complete exercises in this book.

1.4.1 Subscribe to Microsoft Azure
Before you can deploy your cloud services to Microsoft Azure and use various Microsoft Azure
services, you need to create a Microsoft Azure subscription. Microsoft Azure offers free subscrip-
tions for you to try out all services. In addition, if you are an MSDN Professional, Premium,
or Ultimate subscriber, you get up to $150 credits per month to be used on Microsoft Azure
services. To create a new Microsoft Azure subscription, go to http://www.windowsazure.com
and click on the free trial link at the upper-right corner of the home page. You’ll need a free
Microsoft account (previously known as Windows Live ID), which will become your account
administrator.

1.4.2 Install Software Development Kit
Microsoft has SDKs for the following programming languages:

 ◾ .Net
 ◾ Node.js
 ◾ PHP
 ◾ Java
 ◾ Ruby
 ◾ Python

In addition, Microsoft also provides development kits for Mobile Devices and Media Services.
Readers can download them for free at http://www.windowsazure.com/en-us/downloads.

1.5 introduction of Microsoft Azure Management Portal
Before closing this chapter, let us spend some time to get familiar with Microsoft Azure
Management Portal. The interface of this portal is built using standard HTML, which can be

Overview of Cloud Computing ◾ 17

viewed on all major explorers and devices. The UI is simple and clear and is quite easy to work
with (Figure 1.5).

1.5.1 Sign In
Before using the management portal, you need to sign in to Microsoft Azure with your subscriber
account or a co-admin account. At the time of writing this book, either a Microsoft account (origi-
nal Windows Live ID) or a Microsoft Azure Active Directory account could be used to sign in.
For individual users, it is most likely you are using a Microsoft account. Enterprise subscribers
may contact their subscription administrator for sign in information. The sign in process is very
simple—navigate to https://manage.windowsazure.com/ and sign in when prompted.

1.5.2 Page Layout
The portal’s pages consist of the following components:

 ◾ Navigation pane
 The navigation pane is on the left side of the screen. Except for the “All items” icon on the

top, each icon represents a type of asset on Microsoft Azure. Users can navigate to different
assets using the navigation pane.

 ◾ Command bar
 The command bar is at the bottom of the screen. The “new” icon at the lower-left corner pro-

vides a unified way of creating a new item. If you want to create anything, just click on the
“new” icon. The middle part of the command bar is a list of icons that changes with context,
representing the operations supported by currently selected items. Finally, the question mark
icon on the lower-right corner is for online help.

Figure 1.5 Microsoft Azure Management Portal.

18 ◾ Zen of Cloud

 ◾ Status bar
 The status bar is at the bottom of the screen, above the command bar. The status bar shows

dynamic information such as reminders, confirmations, operation progress, and results.
Please see the two examples in Figure 1.6.

Tip: Microsoft Azure Management Portal allows multiple operations to run at the same
time; therefore, there could be multiple messages appearing in the status bar. For such cases,
there will be a number shown at the lower-right corner of the screen to indicate the number
of messages. As shown in Figure 1.7, there are two messages.

Users can dismiss a message by clicking on the OK icon on the right side of the message.
Messages for completed operations can be dismissed together by clicking on the DISMISS
COMPLETED link on the top of the status bar. Note that this menu does not dismiss error
messages.

 ◾ Title bar
 The title bar is displayed on top of the screen and shows subscription information and cur-

rent user information. Users can change languages by using the globe icon. When users have
several Microsoft Azure subscriptions, they can use the Subscriptions menu on the title bar to
filter user assets by subscriptions. Asset management will be explained in Chapter 4.

 ◾ Main display area
 The rest of the page is the main display area. This area has two common display modes: list

and details. Figure 1.8 is an example of the list view. Clicking on any item in this list takes
you to the detailed view of the item.

Figure 1.6 Status bar examples.

Figure 1.7 Managing multiple status messages.

Overview of Cloud Computing ◾ 19

 Two things happen when you click on an item. First, the navigation pane collapses into a
list of icons. Second, items are displayed as a vertical name list to the right of the collapsed
navigation pane. In the main display area, from top to bottom are item title, tabs, and dif-
ferent display segments. Because most of the pages share the same layout, it is very easy to
get familiar with other pages once you’ve learned how to use one page.

1.6 Summary
In this chapter, we reflected on the history of cloud computing and explained some of its basic
concepts. We hope that by reading this chapter, you will get an overview of the essential char-
acteristics of cloud computing. You do not have to fully understand the concepts mentioned in
this chapter immediately, as long as you get a general understanding of them. In the following
chapters, we will further discuss these concepts in more detail. We will also learn how to prepare
for Microsoft Azure development and how to use Microsoft Azure Management Portal. Starting
from the next chapter, we will get in touch with the developing process of the cloud services on
Microsoft Azure. We propose you complete the exercises as you read through the texts to gain
first-hand experience in cloud service development.

Figure 1.8 Details view.

21

Chapter 2

Building Websites
on the Cloud

2.1 Microsoft Azure Websites
In this part, we build a simple website on Microsoft Azure as the first example of using Microsoft
Azure. There are several options to build and host websites on Microsoft Azure. Here we will take
the most direct one, which is to use Microsoft Azure Websites. Azure Websites allows users to
build highly scalable websites with minimum initial investments. For example, when you start
to build a website on Microsoft Azure, you can choose the free hosting mode to begin with and
then increase its capacity as site traffic grows. Websites on Microsoft Azure run in one of the most
advanced data centers in the world, which give you unprecedented advantages in reliability, avail-
ability, efficiency, economy, ease of use, and rich functionalities. Now let us build up a simple
website: Hello, Microsoft Azure.

Example 2.1: Website—Hello, Microsoft Azure

Difficulty: *

 1. Log in to Microsoft Azure Management Portal.
 2. Click WEBSITES on navigation pane.
 3. Click NEW icon on the command bar.
 4. Select COMPUTE→WEBSITE→QUICK CREATE. Then, enter the URL prefix for the

site (all websites belong to azurewebsites.net domain) (Figure 2.1).

Note: The URL prefix must be globally unique and contain between 2 and 60 characters. It
can only contain letters, numbers, and hyphens. The first and the last characters must be a
letter or number. The first and the last characters cannot be hyphens.

 5. Click CREATE WEBSITE to complete the operation.

22 ◾ Zen of Cloud

 6. The website will be built within seconds. You can now use a browser to browse the URL.
Congratulations! You’ve successfully created and deployed your first website on Microsoft
Azure. Isn’t it magical! Now your website is live to users around the world (Figure 2.2).

 7. Next we will use Visual Studio to create a new ASP.NET website and replace the default web-
site. But before we launch Visual Studio, let us first download the publish profile of the website.

Figure 2.1 Creating a new website.

Figure 2.2 the default page of your first website.

Building Websites on the Cloud ◾ 23

Note: About the publish profile
The publish profile is an automatically generated XML file that contains varied informa-
tion necessary for publishing a website, such as user credential and website address. You can
import the publish profile to Visual Studio or WebMatrix so that you do not need to repeat-
edly enter this information while publishing your sites.

 8. In the Microsoft Azure Management Portal, click on the name of the website (as indicated
by the arrow in Figure 2.3) to open its details page.

 9. Click on Download the publish profile link to download the profile. Save it to your local
disk (Figure 2.4).

 10. Launch Visual Studio. Create a new ASP.NET Empty Web Application (Figure 2.5).

Note: In this example, we have chosen to create a new web application. If you want to pub-
lish the existing ASP.NET web application on Azure Websites, you can choose the existing
website project and skip the next step (step 11). Be aware that not all ASP.NET websites can
directly run problem-free on Microsoft Azure (see Section 2.4 for more details).

 11. Add a new default.html file to the website and enter the following code (Code List 2.1):
 12. In Solution Explorer, right-click on the solution and select the Publish menu (Figure 2.6).
 13. In the Publish Web dialog, click the Import button, then select the publish profile you down-

loaded in step 9 (Figure 2.7).

Figure 2.3 Website list on management portal.

24 ◾ Zen of Cloud

 14. After the publish profile is successfully imported, you will find all the information needed for
publishing automatically uploaded. All you need to do now is to click on the Publish button
to publish the website (Figure 2.8).

 15. The publishing process takes only seconds. Once publishing is complete, your new website
will be successfully deployed (Figure 2.9).

Note: Due to browser caching, you may need to refresh your browser to see the new page.

Figure 2.4 Download publish profile.

Figure 2.5 Creating a new ASP.net website project.

Building Websites on the Cloud ◾ 25

Note: With Microsoft Azure SDK 2.3, you can directly publish to an existing website from
Visual Studio without manually importing the publish profile first. You can also publish
your web site to a new or existing virtual machine.

2.2 Website Deployment and Upgrade
We have just created and deployed our first website on Microsoft Azure. Besides deploying via
Visual Studio, Azure Websites also supports other tools and approaches to deploy websites, such as
WebMatrix, FTP, and integration with source control systems. Next, let us explore these different
approaches.

CODE LIST 2.1 HELLO, MICROSOFT AZURE WEBSITES

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title></title>

</head>

<body>

 <h1>Hello, Microsoft Azure Web Sites!</h1>

</body>

</html>

Figure 2.6 Publish menu in Visual Studio.

26 ◾ Zen of Cloud

Figure 2.7 import publish profile.

Figure 2.8 Publish website.

Building Websites on the Cloud ◾ 27

Example 2.2: Use WebMatrix to Update Websites

Difficulty: *
WebMatrix is a free and handy website-developing environment provided by Microsoft. Azure
Websites provides built-in support of WebMatrix. We cannot provide a thorough introduction of
Web Matrix here due to restriction of space. Instead, we will use a simple example to demonstrate
the tool. If you have no plan of using WebMatrix, you can skip this example.

 1. Log in to Microsoft Azure Management Portal.
 2. Select Websites on the navigation pane.
 3. From the website list, select the website we created in Example 2.1. Then click the

WEBMATRIX icon on the command bar (Figure 2.10).
 4. If you do not have WebMatrix installed, the system will guide you through the installation

process to get it installed. Then WebMatrix will start with your web project loaded. Click on
the Edit live site directly link to edit the live site (Figure 2.11).

 5. Double-click default.html to open the file (arrow 1 in Figure 2.12). Then, change some texts
on the page—“Version 2” is appended to the original text (arrow 2). Finally, click the save
button to update the live site (arrow 3).

 6. Refresh the browser; you can see that the website has already been updated (Figure 2.13).

Figure 2.9 Hello, Microsoft Azure Websites!

Figure 2.10 WeBMAtRiX icon on command bar.

28 ◾ Zen of Cloud

Figure 2.11 WebMatrix with website loaded.

Figure 2.12 edit website in WebMatrix.

Building Websites on the Cloud ◾ 29

Of course, this only gives a quick glance to WebMatrix. WebMatrix has many powerful functions,
such as CSS editor, data management, template management. The reader may consult WebMatrix
documentation for more information if interested.

Example 2.3: Use FTP to Deploy and Update a PHP Website

Difficulty: *
Azure Websites also supports the deployment via FTP. In this example, we will use PHP to create a
new website and deploy it to Microsoft Azure by using FTP.

 1. Create a new Microsoft Azure website.

Note: For steps to create a website, please see Example 2.1, steps 1–6.

 2. Open the website’s details page. Then click on the Reset your deployment credentials link
(Figure 2.14).

Figure 2.13 Second version of the website.

Figure 2.14 Reset deployment credentials link.

30 ◾ Zen of Cloud

 3. Git cannot use your Windows account to authenticate, so you need to specify a user name
and password for FTP deployment (Figure 2.15).

 4. Click on the DASHBOARD link to return to the website’s dashboard (Figure 2.16).
 5. Scroll down and you will see the website’s FTP host name and user name (Figure 2.17).
 6. Create a new folder, and add a new index.php page to the folder.

<?php
 echo "Hello, PHP web site!";
?>

 7. Use an FTP client to upload index.php to site\wwwroot directory of the FTP site.
 8. Now you can use http://[website name].azurewebsites.net to access the page (Figure 2.18).

Note: PHP Support on Microsoft Azure
Microsoft Azure websites support both PHP versions 5.3 and 5.4, which you can specify on
a website’s CONFIGURE page (Figure 2.19).

In addition, Microsoft Azure also provides a PHP SDK for PHP developers. You can
download the SDK from Microsoft Azure PHP Developer Center: http://www.windows
azure.com/en-us/develop/php/.

Figure 2.15 Set up FtP user name and password.

Building Websites on the Cloud ◾ 31

Figure 2.16 DASHBoARD link.

Figure 2.17 FtP host name and user name.

32 ◾ Zen of Cloud

2.3 integration with Source Control Systems
WAWS supports integration with many source control systems:

 ◾ Team Foundation Service
 Microsoft’s Team Foundation Service is the SaaS version of Microsoft’s Team Foundation

Server. It provides a comprehensive solution for project management, source control, prob-
lem tracking, automated testing, etc.

 ◾ CodePlex
 CodePlex is Microsoft’s free site for hosting open-source projects. You can create new open-

source projects on CodePlex, or join thousands of existing projects.
 ◾ Git and GitHub

 Git is a distributed source code management system that has become popular in recent
years. Many products and tools of Microsoft fully support Git.

Figure 2.18 PHP website.

Figure 2.19 Select PHP version.

Building Websites on the Cloud ◾ 33

 ◾ Dropbox
 Dropbox is a service that enables you to carry all your photos, documents, and videos with

you and enjoy them whenever and wherever you want to. Microsoft Azure supports efficient
synchronization and deployment of the source code in Dropbox folders.

 ◾ BitBuckets
 BitBucket is a hosting site for distributed version control systems (DVCS) such as Git and

Mercurial. It provides services such as problem tracking, wiki, and integration with other
popular services such as Basecamp, Flowdock, and Twitter.

We discuss project management in Section IV of this book. Here we demonstrate Git integration
with a simple example.

Example 2.4: Use Git to Deploy and Update a Website

Difficulty: **
This example is a continuation of Example 2.3; therefore, you will need to complete Example 2.3
before starting with this exercise.

 1. Open the details page of the website (if you do not see the page in Figure 2.20, click on the
icon of the blue cloud with a flash under your website name). Then click the Set up deploy-
ment from source control link.

 2. In the SET UP DEPLOYMENT dialog, select the source control service you want to use.
Here select Local Git repository (Figure 2.21).

 3. It only takes seconds to provision the Git repository. Then, you will see a confirmation page,
where you can get the URL to your new Git repository (Figure 2.22).

 4. Open Git’s command prompt and navigate to the directory containing index.php; then sub-
mit the index.php to the source code repository by using the following Git commands:

git init
git add.
git commit –m "initial commit"
gi t remote add azure https://haishi2@aurec1-2.scm.azurewebsites.net/

aurec1-2.git
git push azure master

 Note: The URL in these commands (highlighted) needs to be replaced by the URL
you obtain in the preceding step. You will notice some changes in the details page (see
Figure 2.23). As soon as you push your changes to the remote repository, the code is
deployed to your production environment. Because of the simplicity and agility of the
process, direct modification of the production environment is widely used by many service
developers, especially in small start-ups. However, you do run the risk of interrupting your
service by accidentally committing a bad version. We will discuss how to ensure check-in
qualities in Section IV of this book.

 5. Now, let us open the index.php page and add one line to invoke the phpinfo() method:

<?php
 echo "Hello, PHP web site!";
 phpinfo();
?>

34 ◾ Zen of Cloud

Figure 2.20 Website’s details page.

Figure 2.21 Select Git repository service.

Building Websites on the Cloud ◾ 35

Figure 2.22 Git repository URL.

Figure 2.23 Website deployment via Git.

36 ◾ Zen of Cloud

 6. Save the file. Then use Git to commit the new version:

git add.
git commit –m "version 2"
git push azure master

 7. After the second version is deployed, you will see two deployments recorded in the history
(Figure 2.24).

 8. Now, click the BROWSE icon on the command bar to browse the updated website
(Figure 2.25).

Note: When you have multiple developments, you can switch between different versions at
any time. You can select any inactive deployment, and then select the REDEPLOY icon to
promote it as the active deployment. This allows you to quickly switch to a previous deploy-
ment if you find that your new deployment is broken.

In addition, Azure Websites also supports a multiple deployment environment. You can
create additional deployment slots by clicking on the “Add a new deployment slot” link on
the website’s DASHBOARD page. Then, you can deploy your site to any of the slots and
swap among these slots at any time.

Figure 2.24 two deployments of the website.

Building Websites on the Cloud ◾ 37

2.4 Scaling of Websites
As mentioned earlier, one of the major benefits of hosting websites on Azure Websites is salabil-
ity. You can adjust the throughputs of your websites by simply modifying their configurations,
without needing to care about the details of managing underlying infrastructures. All you need
to do is to click the mouse several times, and your websites will gain the required capabilities
within seconds.

On Azure Websites, you can scale your websites vertically or horizontally. Vertical scaling is
done by choosing different hosting modes, and horizontal scaling is done by changing the number
of website instances.

2.4.1 Vertical Scaling
 ◾ Free mode

 When you deploy a new website on Azure Websites, by default it is put under the FREE
hosting mode. In this mode, your websites share the available resources on Microsoft Azure
with other websites. Moreover, Microsoft Azure may allocate your websites to different vir-
tual machines to balance resource usage.

 To ensure that websites share the resources fairly, Microsoft Azure puts limits on the
amount of CPU cycles, egress data, and storage space that your websites can use. Such
limits, or quotas, are calculated per Microsoft Azure subscription. For instance, Microsoft
Azure allows a maximum of 156M of egress data from websites hosted in free mode. When
you deploy multiple websites, the 156M quota is shared among all these websites. In addi-
tion, different quotas have different sampling intervals. For example, egress data quotas are
calculated per day, and storage quotas are calculated per hour (Figure 2.26).

Figure 2.25 Updated PHP site.

38 ◾ Zen of Cloud

Note: When one of your websites exceeds your quota, ALL websites under the same subscrip-
tion will be stopped, till the next sampling interval starts. You can monitor your resource
usage on the website’s dashboard page. In the usage overview section, you may not only
monitor resource usages, but also observe when quotas will be reset.

 ◾ Shared mode
 Websites hosted in the shared mode have the same running environment as in the free mode.

The difference between the two modes is that the websites in the shared mode are not con-
strained by data egress quotas. In the shared mode, the first 5G of egress data is free, and
more traffic is charged in a pay-as-you-go mode.

 ◾ Standard mode
 Websites hosted in the standard mode run on dedicated virtual machines. Because they have

exclusive accesses to resources, they can achieve higher, more stable performance without
constraints of quotas. The resource consumption under standard mode is charged in pay-
as-you-go mode. In addition, in the standard mode, you can specify the sizes of virtual
machines, such as small (1 core, 1.75 GB memory), medium (2 cores, 3.5 GB memory), and
large (4 cores, 7 GB memory). You should note that if you have multiple websites in the stan-
dard mode, they may share the same virtual machine. In other words, the virtual machines
are dedicated to your subscription, but that does not necessarily mean each website has a
dedicated virtual machine. However, you can select the websites you want to be hosted
in the standard mode. If you want to ensure that one or several websites have dedicated
resources, you can select to put only these sites in the standard mode (see Figure 2.28).

Figure 2.26 Usage overview section.

Building Websites on the Cloud ◾ 39

2.4.2 Horizontal Scaling
In shared and standard modes, you can horizontally scale your websites. In the shared mode, you
can scale out to as many as 6 instances, while in the standard mode, you can scale out up to 10
instances. In addition, in the standard mode, you can choose whether the scaling is to be applied
to all your websites or selected websites only.

Note: The available scaling ranges may change.

You can change scaling settings on the Microsoft Azure Management Portal. On a website’s
SCALE page, you can choose different hosting modes, and you can drag the INSTANCE
COUNT slider to change the number of instances, as shown in Figure 2.27.

Tip: When you have unsaved changes, corresponding fields will be highlighted with
purple background, reminding you to save the changes by using the SAVE icon on the
command bar.

2.4.3 Autoscaling
In the standard mode, you can also enable autoscaling based on CPU usage. You can specify
that when CPU usage goes above or below certain thresholds, the number of instances should be

Figure 2.27 Scaling settings on Management Portal.

40 ◾ Zen of Cloud

increased or decreased to keep the CPU usage within the given range. You can also specify how
many instances you would allow your websites to be scaled to. Microsoft Azure will never go
beyond the range you choose on this page (Figure 2.28).

2.5 Migrating existing ASP.net Websites
In previous examples, we have used new websites only. In real-life jobs, you may often need to
migrate existing ASP.NET websites to Microsoft Azure. Obviously, because Microsoft Azure
provides first-class support to ASP.NET, many ASP.NET websites can be directly deployed to
Microsoft Azure (see the deployment steps in Example 2.1). However, not all ASP.NET websites
can directly run on Microsoft Azure problem-free. Some sites may fail to launch; others may seem
okay but expose some problems later on. In the second section of this book, we discuss various
aspects in designing cloud services. Here we go through several pitfalls you might face.

2.5.1 Azure Websites Runtime Environment
Azure Websites runtime environment is based on Internet Information Services (IIS) running on
the Windows operating system. However, because this is a multitenant environment, your web-
sites share resources with other websites. Because of this, Azure Websites does not allow you to
deeply customize IIS or virtual machines, such as installing third-party software. If you need more
control over the running environment, you will have to consider Microsoft Azure Cloud Services
(MACS) or Microsoft Azure Virtual Machines. We introduce MACS in Chapters 3 and 4.

Figure 2.28 Autoscaling settings.

Building Websites on the Cloud ◾ 41

2.5.2 Data Storage
Azure Websites does not allow you to access the entire file system on virtual machines. But you
can read and write files and folders under the root folder of your sites. In addition, if you use data-
bases, you will need to migrate your databases to either SQL Database or MySQL service (MySQL
is provided by ClearDB). On the other hand, if you need high-performance key-value pair storage,
or large-volume file storage, you should consider Microsoft Azure Storage service. We discuss vari-
ous data storage options in Chapters 5 and 6.

2.5.3 Session States
Although Azure Websites supports cookie-based sticky sessions, it is advisable to save session states
to external storages (such as databases). When the virtual machine hosting your website fails,
the Azure Websites failover mechanism will reallocate your website to another healthy virtual
machine. If you save your session states in memory, the states will be lost during such migrations.
In addition, if a website is inactive for a long time, it will be removed from IIS to maintain website
density and put into hibernation, which will cause websites to lose in-memory states as well. In
general, you should use stateless design when designing cloud services. We discuss stateless design
in Section II of this book.

2.6 Website Gallery
In addition to supports for ASP.NET, PHP, and Node.js, Azure Websites also provides a website
gallery based on open-source projects. While this book is written, the gallery contains many dif-
ferent types of open-source projects such as Drupal, Wordpress, Joomla!, and MediaWiki. The
companion website of this book is made using the Drupal template. Now let us learn how to use
the gallery through an example.

Note: Refer to Example 7.5 for a Node.js example.

Example 2.5: Creating a Drupal Website

Difficulty: **

 1. Sign in to Microsoft Azure Management Portal.
 2. In command bar, click on the NEW icon, and then select WEBSITE→FROM GALLERY

(Figure 2.29).
 3. In ADD WEB APP dialog, select the Acquia Drupal 7 template, and then click the next

arrow to continue (Figure 2.30).
 4. On the next page, enter the URL of your website. In the DATABASE field, choose an exist-

ing database, or create a new database for the site. Here choose the free 20 MB SQL database
option. Enter your user name and password for the database, and click the next button to
continue (Figure 2.31).

 5. On the next page, create a new SQL database server. Enter the database name, user name,
and password; then click on the check icon to complete the process (Figure 2.32).

 6. Provisioning the website and related database resources only takes a couple of minutes. Once
the site is created, click on the URL to open the website (as shown in Figure 2.33).

42 ◾ Zen of Cloud

 7. On the Drupal welcome page, Click here to continue to install Drupal (Figure 2.34).
 8. After installation, enter the email address, user id, and password for the administrator, and

then click the Save and Continue button to continue (Figure 2.35).
 9. Now your Drupal site is ready. Optionally, you can create an Aquia network subscription and

install latest patches for your site (Figure 2.36).

2.7 Website Configuration
Azure Websites allows you to manage application settings through the Management Portal. In the
following example, we will create a simple website that plots functions. The site allows the system
administrator to change the colors of the axis and plot lines. Although this is not a typical site you
might build, it would not hurt to have a little fun once in a while.

Figure 2.29 Create website from gallery.

Figure 2.30 Drupal template.

Building Websites on the Cloud ◾ 43

Figure 2.31 Configuring a website.

Figure 2.32 Database settings.

44 ◾ Zen of Cloud

Figure 2.33 Created website.

Figure 2.34 Drupal welcome page.

Figure 2.35 Configuring Drupal site.

Building Websites on the Cloud ◾ 45

Example 2.6: Website Configuration—Plotting User Functions

Difficulty: ***

 1. Follow steps 1 through 10 in Example 2.1 to create a new ASP.NET website.
 2. Add a default.aspx Web Form to the site. The main part of the code is in JavaScript, which

takes an x expression and a y expression and plots the function in a <canvas> tag. The appli-
cation takes two settings to control the axis color (axis-color) and the plot color (plot-color).
The application uses System.Configuration.ConfigurationManager.AppSettings to read these
settings. The complete source code of the form is as follows (Code List 2.2):

 3. In the web.config file, add the corresponding application settings (in bold):

<?xml version="1.0"?>
<configuration>
 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>
 <appSettings>
 <add key="axis-color" value="gray"/>
 <add key="plot-color" value="black"/>
 </appSettings>
</configuration>

 4. Press F5 to run the application locally. Click on the render button to plot the default function.
You can enter other expressions with t as argument to further test the application (Figure 2.37).

Note: In order to simplify the code, we skip the input validation. So the code is subject to
code injection attack. You should add validations in your version.

Figure 2.36 Drupal website.

46 ◾ Zen of Cloud

CODE LIST 2.2 WEB FORM THAT PLOTS FUNCTIONS

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="default.
aspx.cs" Inherits="Example2.6._default" %>

<%@ Import Namespace="System.Configuration" %>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <m eta http-equiv="Content-Type" content="text/html;

charset=utf-8" />
 <title></title>
 <script>
 function plotExpression() {
 //get size of canvas object
 var canvas = document.getElementById('plot');
 var height = canvas.height;
 var width = canvas.width;
 //adjust origin and scale based on canvas size
 var xOrigin = width / 2;
 var yOrigin = height / 2;
 var xScale = width / 10;
 var yScale = height * xScale / width;
 //initialize canvas
 var context = canvas.getContext('2d');
 context.clearRect(0, 0, width, height);
 //read axis color from application settings
 context.strokeStyle =
 '<%=ConfigurationManager.AppSettings["axis-color"]%>';
 //draw axis
 context.beginPath();
 context.moveTo(0, yOrigin);
 context.lineTo(width, yOrigin);
 context.moveTo(xOrigin, 0);
 context.lineTo(xOrigin, height);
 context.stroke();
 //read plot color from application settings
 context.strokeStyle =
 '<%=ConfigurationManager.AppSettings["plot-color"]%>';
 //plot the function
 context.beginPath();
 for (var t = −10; t <= 10; t += 0.1) {
 var x = eval(xExp.value);
 var y = eval(yExp.value);
 co ntext.lineTo(xOrigin + x * xScale, yOrigin - y *

yScale);
 context.stroke();
 }
 }
 </script>
</head>

Building Websites on the Cloud ◾ 47

 5. Follow steps 12 through 15 in Example 2.1 to deploy the website on Azure Websites.
 6. On the details page, click on the CONFIGURE link to open the configuration page, on

which you will find the app settings section (you need to scroll down to see the section)
(Figure 2.38).

 7. Although the axis-color and plot-color settings are not automatically populated from your
web.config file, you can enter new values in this section to replace the values in web.config.
After you have added the two settings, click the SAVE button on the command bar to save
changes (Figure 2.39).

<body>
x expression:<input type="text" id="xExp"
 value="Math.sin(2*t-2*Math.PI/3) * 3"
 style="width: 300px" />

y expression:<input type="text" id="yExp" value="Math.cos(3*t) * 3"
 style="width: 300px" />

<input type="button" id="render" value="render"
 onclick="javascript: plotExpression();" />

<canvas width="500" height="500" id="plot"></canvas>
</body>
</html>

Figure 2.37 Sample plot.

48 ◾ Zen of Cloud

Note: Azure Websites saves setting values in a central database so that multiple instances of
a website can share the same set of settings.

 8. In the browser, refresh the page and plot the function again. You will find the diagram colors
have changed.

Tip: In PHP, you can use the getenv() method to read settings. For example,
getenv("aix-color")

In Node.js, you can use process.env to read settings. For example,
process.env.plot-color

Figure 2.38 App settings section.

Figure 2.39 Updated application settings.

Building Websites on the Cloud ◾ 49

2.8 Website Diagnostics and Monitoring
2.8.1 Website Diagnostics
First of all, because you can debug your ASP.NET websites in your development environments,
many problems can be discovered and resolved locally before your websites are deployed to
Microsoft Azure. Of course, the most annoying bugs always jump out on you in production envi-
ronments. Azure Websites diagnostics comes to the rescue in this case. You can turn on and off the
collection of various diagnostic logs on a website’s configuration page (Figure 2.40).

 ◾ Application diagnostics
 Turning on application diagnostics allows you to save tracing information from your source

code to either the local file system or a storage account. When you save trace files to the file
system, you can download them via an FTP within 12 hours. When you save trace informa-
tion to a storage account, you can view them via any clients that support Microsoft Azure
Storage service (we introduce the service in Chapter 6) (Figure 2.41).

 You can get the FTP address to download the diagnostics logs on the website’s dashboard
page (Figure 2.42).

 Just as in any other .NET applications, you can instrument your ASP.NET applications
using System.Diagnostics namespace. For example, you can modify the default.aspx.cs in
Example 2.6 to add some tracing information (Code List 2.3):

 After the website is deployed, you can download the tracing files from the mentioned
FTP address. For instance, this code generates the following file content:

 2013‐04‐14T01:16:12 PID[4516] Information This is a test message

Figure 2.40 Diagnostics settings.

50 ◾ Zen of Cloud

 In addition to collecting diagnostics logs, you can turn on or off web server tracing (see Figure
2.40). Then, you can download the tracing files via an FTP. Figure 2.43 shows that after web
tracing is turned on, there is an additional http directory, which contains website tracing files.

 ◾ Log streaming
 You can also stream logs directly to Visual Studio. To start streaming logs, right-click on

the website in Visual Studio Server Explorer, and select View Streaming Logs in the output
window menu (Figure 2.44).

 Then, you will see the logs streamed to the output window (Figure 2.45).

Figure 2.41 Application diagnostics settings.

Figure 2.42 FtP address to download diagnostics logs.

Building Websites on the Cloud ◾ 51

CODE LIST 2.3 INSTRUMENT ASP.NET CODE

public partial class _default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 Sy stem.Diagnostics.Trace.TraceInformation("This is a

test message");
 }
}

Figure 2.43 Web tracing files.

Figure 2.44 View Streaming Logs menu.

Figure 2.45 Streamed logs.

52 ◾ Zen of Cloud

2.8.2 Website Monitoring
You can configure performance counters collected by Azure Websites on a website’s MONITOR
page. On this page, you can click on the ADD METRICS icon on the command bar to choose
performance counters; you can also turn on or off plot lines by clicking on the colored checks
(Figure 2.46).

Furthermore, in the standard mode, you can turn on website monitoring, which tests the
performance of your website from distributed test locations around the globe. As shown in Figure
2.47, two test locations have been configured—one in Chicago and one in Dublin—to test the
performance of the home page.

After several hours, you will see the test results on the dashboard (Figure 2.48).
Clicking on the endpoint name brings up the test details (Figure 2.49).

Figure 2.46 Monitor page.

Figure 2.47 Distributed test locations.

Building Websites on the Cloud ◾ 53

Figure 2.48 Web endpoint status.

Figure 2.49 test result details.

54 ◾ Zen of Cloud

2.8.3 Custom Domain Names
If you wish to add custom domain names on your websites, you need to create a CNAME record
with your DNS provider to map your domain name to [website].azurewebsites.net. For example,
when azurebyexamples.haishibai.com was mapped to azurebyexamples.azurewebsites.net, a CNAME
record was created with my DNS provider (Figure 2.50).

Then, you can manage your custom domain names (applicable only to standard mode). Click
on the manage domains button (Figure 2.51).

Finally, in the Manage custom domains dialog, add the custom domain names you want to
use (Figure 2.52).

Figure 2.50 CnAMe record.

Figure 2.51 Manage custom domains.

Building Websites on the Cloud ◾ 55

2.9 Summary
Websites are the most common type of cloud services. In this chapter, we introduced Microsoft
Azure Websites in detail. We studied how to develop an ASP.NET MVC website using Visual
Studio; we created a PHP website; we deployed a Drupal website in minutes; and we also stud-
ied how to use WebMatrix, FTP, and Git to deploy websites. In addition, we learned different
concepts and tools for website managing, monitoring, and tracing. We also examined different
scaling options in detail. Finally, we learned the basic steps for configuring custom domains.

Figure 2.52 Manage custom domains dialog.

57

Chapter 3

Cloud Service Fundamentals

3.1 Microsoft Azure Cloud Services
As we learned in the previous chapter, Azure Websites provides a quick and easy way to create and
host websites on Microsoft Azure. However, the architecture of a common cloud service is often
much more complex than a simple website. For example, in a multitier cloud service, the presen-
tation layer, business layer, and data layer are separate. Such a complex architecture is hard to
implement with Azure Websites. In addition, under Service-Oriented Architecture (SOA), many
cloud services are not presented as websites. They may not have user interfaces, but only provide
integration endpoints based on different protocols such as HTTP, TCP, or UDP. Furthermore,
many cloud services need to integrate with legacy systems, which can he hosted on Microsoft
Azure Virtual Machines, on-premise data centers, or even local servers in users’ offices. Microsoft
Azure Cloud Services (MACS) provides support for all these scenarios.

Because MACS is a common platform for all kinds of cloud services, there is no problem in using
it for websites (as we mentioned in Chapter 1, websites are just one type of cloud services). This is
exactly what we are going to do in the following example. Then, we will go over some basic concepts.

Example 3.1: Hello, Microsoft Azure Cloud Service!

Difficulty: *

 1. Launch Visual Studio as an administrator.

Note: We need to launch Visual Studio with elevated privileges because of the require-
ments of the Computer Emulator in Microsoft Azure SDK. Starting with Microsoft Azure
SDK 2.3, you don’t need to launch Visual Studio as an administrator anymore, as the new
lean emulator doesn’t require elevated privileges. The lean emulator doesn’t support multi-
instance emulation, which you can still get using the full emulator.

 2. Select FILE→New→Project menu.
 3. On New Project dialog, select the Microsoft Azure Cloud Service template under the

Cloud category. Enter a project name, and then click the OK button to continue (Figure 3.1).

58 ◾ Zen of Cloud

 4. On New Microsoft Azure Cloud Service dialog, add an ASP.NET Web Role to the cloud
service, and then click the OK button to continue (Figure 3.2).

 5. On New ASP.NET Project dialog, select the MVC template, and click OK to continue
(Figure 3.3).

 6. Congratulations! You’ve just created your first cloud service! And you haven’t even written a
single line of code yet. Isn’t that cool? What’s even cooler is that you can now test your cloud
services locally by pressing F5.

Figure 3.1 Create a new cloud service.

Figure 3.2 Adding a web role to a cloud service.

Cloud Service Fundamentals ◾ 59

 7. When you press F5, you will notice a dialog popping up (see Figure 3.4). This dialog represents
something very unique provided by Microsoft Azure for cloud service developers—a local
debugging environment. With this emulated environment providing simulated MACS
as well as Microsoft Azure Storage services (more on this in later chapters), you can test
and debug your cloud services locally. You can set up break points and step through code
execution just as if you were debugging a local application. All these advantages improve
the work efficiency of developers and prove yet again the philosophy of Microsoft, which is
developer first.

Note: If you see a security alert when the debugging environment is launched, click Allow
access to continue (Figure 3.5).

 8. Shortly after the debugging environment is launched, you will see the website running on it
(Figure 3.6).

Figure 3.3 new ASP.net MVC 4 Project dialog.

Figure 3.4 Starting the Microsoft Azure Debugging environment.

60 ◾ Zen of Cloud

Figure 3.5 Windows security alert.

Figure 3.6 Website running on the debugging environment.

Cloud Service Fundamentals ◾ 61

Note: About the Microsoft Azure Debugging Environment
The Microsoft Azure Debugging Environment is part of Microsoft Azure SDK. After the
environment is launched, you can see its icon on the Windows task bar (Figure 3.7).

Right-click on the icon, and select Show Compute Emulator UI to bring up the emulator
UI (Figure 3.8).

You can observe the status of our web role and its tracing outputs. We will make more use
of this UI in Section 3.1 (Figure 3.9).

3.2 Cloud Services and Roles
In Example 3.1, we created a new cloud service. Before we move on to new contents, let us first
examine the source code structure of Example 3.1. As shown in Figure 3.10, the solution contains
two projects. The first is the cloud service project, which contains a Roles folder. Under the Roles
folder is the definition of our web role (WebRole1). The definition corresponds to the other proj-
ect in the solution, which is an ASP.NET project with the same name. If you are familiar with
ASP.NET MVC, you can easily see this project is an ordinary ASP.NET MVC project. The only
exception is the extra WebRole.cs file. For now you can ignore this file. Actually, even if you delete

Figure 3.7 Debugging environment icon on Windows task bar.

Figure 3.8 Shortcut menu to bring up emulator Ui.

62 ◾ Zen of Cloud

Figure 3.9 Compute emulator Ui.

Figure 3.10 Cloud service solution code structure.

Cloud Service Fundamentals ◾ 63

this file, it will not affect compilation or execution of your web role. In summary, a cloud service
solution has the following structure:

 ◾ A cloud service project, which contains definitions and configurations of all roles.
 ◾ Each role in a cloud service has its own corresponding project. For example, for a web role,

its corresponding project is an ASP.NET project.

We have mentioned “role” several times but have not given a formal definition yet. Now it is time
for us to do that and go over some other basic concepts related to cloud services.

3.2.1 Role
Simply speaking, a role is a unit that provides some kind of service. End users can access these ser-
vices via endpoints exposed by the role. For example, a web role is a functional unit that provides a
website, which is accessible by HTTP, port 80. The left side of Figure 3.11 depicts such a web role.
End users do not need to understand any implementation details of the role. As long as they can
access the endpoint (the URL of the website), they can utilize the service. On Microsoft Azure, a
role can have multiple endpoints, and these endpoints can use different protocols, such as HTTP,
TCP, and UDP, as shown in the right part of Figure 3.11.

3.2.2 Cloud Service
Generally speaking, a Cloud Service on Microsoft Azure is a container that can hold a number of
different roles. Figure 3.12 shows an example of a cloud service. As a container, it holds two roles.
The first role defines one endpoint, and the second role defines three endpoints.

RoleRole

HTTP HTTP UDP TCP

Figure 3.11 Role example.

Cloud service

Role Role

HTTPHTTP UDP TCP

Figure 3.12 Cloud service example.

64 ◾ Zen of Cloud

Under most circumstances, consumers of cloud services do not care exactly which roles are
providing the required services. From their perspective, they can simply consider that all end-
points are provided by the cloud service, as shown in Figure 3.13.

Of course, a cloud service is merely a container of roles, but it is also a development, manage-
ment, communication, and security boundary. First of all, on Microsoft Azure, the development
unit is a cloud service. Even if you only need one role, you need to put it in a cloud service, as we
have seen in Example 3.1. Second, when you deploy to Microsoft Azure, the deployment unit is a
cloud service as well. Third, a cloud service defines a private communication space for the roles it
contains. Roles in the same cloud service can communicate with each other via private endpoints,
which are invisible from outside the cloud service. As our discussion goes deeper, you will under-
stand more characteristics of cloud services as containers.

3.3 Basic Steps of Cloud Service Deployment
In Example 3.1, we only tested our cloud service in an emulated environment. Now let us deploy
the service to Microsoft Azure. The deployment process consists of the following steps:

 1. Create a new Cloud Service on Microsoft Azure.
 2. If you have not downloaded the publish profile, you need to download it first.

Note: The publish profile is valid for all services in all your Microsoft Azure subscriptions
associated with the same Microsoft Account (or Microsoft Azure Active Directory account),
so you only need to download it once. As a matter of fact, because Microsoft Azure generates
a new digital certificate for authentication each time you download the profile, and there is
a limit on the number of certificates you can have, it is not recommended to download this
file repeatedly.

The publish profile of Azure Websites cannot be used as a MACS publish profile.

 3. Compile and package the service. The packing process creates two files: a cloud service pack-
age file (.cspkg) and a cloud service configuration file (.cscfg).

 4. The package file and the configuration file are uploaded to Microsoft Azure.

HTTP

Cloud service

HTTP UDP TCP

Figure 3.13 Consumer’s view of a cloud service.

Cloud Service Fundamentals ◾ 65

Note: To be exact, the cloud service package and the configuration file are uploaded to a
storage account of your Microsoft Azure subscription. We will introduce Microsoft Azure
Storage services in Chapter 6.

 5. Microsoft Azure provisions required virtual machines based on the configuration file.
 6. Cloud service package is deployed to the virtual machines.
 7. Service roles are launched to handle user requests.

Now let us go through this process with an example.

Example 3.2: Deploy Cloud Service

Difficulty: *

 1. Launch Visual Studio as an administrator. Open the solution in Example 3.1.
 2. Right-click on the cloud project in the solution, and then select the Publish menu

(Figure 3.14).
 3. If you have not deployed any cloud services before, you need to download a publish profile.

When the Publish Microsoft Azure Application dialog is launched, an additional dialog
box shows up to allow you to sign in to your Microsoft Azure subscription. Enter your cre-
dentials and click the Sign in button to sign in (Figure 3.15).

 4. Once signed in, you can select the subscription you want to use from the Choose your sub-
scription dropdown box. Then, click the Next button to continue (Figure 3.16).

 5. On the next screen, if you have not created any cloud services yet, Create Microsoft Azure
Services dialog will automatically pop up. Continue with step 6. Otherwise, pull down the
Cloud service dropdown box, and select <Create New…> (Figure 3.17).

 6. On Create Microsoft Azure Services dialog, enter a name for your cloud service and choose
a location where you want the service to be deployed. The cloud service name has to be glob-
ally unique, and the final address of your cloud service will be [name].cloudapp.net. Click on
the OK button to continue (Figure 3.18).

Note: If you have not created a storage account yet, the tool will automatically create a new
storage account with the same name as your cloud service for package uploads. We intro-
duce Microsoft Azure Storage services in Chapter 6.

Figure 3.14 Publish menu.

66 ◾ Zen of Cloud

Figure 3.15 Sign in to Microsoft Azure subscription.

Figure 3.16 Select Microsoft Azure subscription.

Cloud Service Fundamentals ◾ 67

 7. [Optional] Before we click the Next button, check the Enable Remote Desktop for all roles
checkbox.

 8. [Optional] Step 7 pops up a Remote Desktop Configuration dialog, where you can enter
your user name and password for remote desktop access to virtual machines hosting your
cloud service (Figure 3.19).

 9. Click the Next button to continue.
 10. Click the Publish button. The deployment process takes several minutes. You can observe

the deployment progress in the Microsoft Azure Activity Log window. After deployment
succeeds, you can click on the Website URL link to bring up the website (Figure 3.20).

Now we can also manage our cloud service on Microsoft Azure Management Portal. You will find
that the user interface for cloud service management is very similar to website management UI
(Figure 3.21).

Open the INSTANCE page of the cloud service. You will see that the cloud service has one
running instance. If you have enabled remote desktop access in steps 7 and 8, you can click on

Figure 3.17 Create a new Cloud Service from the publish wizard.

Figure 3.18 Create Microsoft Azure Services dialog.

68 ◾ Zen of Cloud

Figure 3.19 Remote Desktop Configuration dialog.

Figure 3.20 Microsoft Azure Activity Log window.

Figure 3.21 Cloud service management Ui on Management Portal.

Cloud Service Fundamentals ◾ 69

the CONNECT icon on the command bar to open the remote desktop to the virtual machine
(Figure 3.22).

Once connected to the remote desktop, you can observe that your role instance is running on a
Windows Server 2012 virtual machine. In the next section, we introduce how to choose the opera-
tion system on the virtual machines (Figure 3.23).

3.4 Cloud Service Deployments and Upgrades
We have learned the basic deployment steps in Example 3.2. Now let us dig a little deeper in the
deployment and upgrade processes.

Figure 3.22 instance page of a cloud service.

Figure 3.23 Remote desktop connection to role instance.

70 ◾ Zen of Cloud

3.4.1 Incremental Updates (Update Domain Walk)
Upgrading a cloud service in Visual Studio is very simple. All you need to do is to right-click
on the cloud project, and select the Publish menu again. Then, on Publish Microsoft Azure
Application dialog, click the Publish button to publish a new version of your cloud ser-
vice. Finally, in Deployment Environment In Use message dialog, click the Replace button
(Figure 3.24).

By default, MACS performs an update domain walk (see Section 1.2.2) during upgrade. Each
cloud service has 5 update domains by default, and role instances are evenly distributed into these
update domains. For example, if your cloud service role has 3 instances, then 3 out of 5 update
domains will be used, with 1 instance in each update domain. On the other hand, if your cloud
service role has 11 instances, then 4 update domains will have 2 instances, and 1 update domain
will have 3 instances. The update domain walk ensures your cloud service has at least one group of
running instances during upgrades (assuming all your cloud service roles have at least 2 instances),
hence the availability of the service is protected—this is the so-called zero-downtime upgrades.
One problem of this upgrade strategy is speed (especially when you have many update domains).
Another problem is that at any given moment during upgrades, you may have two versions of
instances running at the same time. We discuss the second problem in Section II of this book. In
Section 3.4.2, we introduce a different upgrade method to improve speed.

3.4.2 Simultaneous Updates
Instead of the update domain walk, you can choose to update all instances simultaneously.
Obviously, this update method provides faster speed, but will cause service interruption during
upgrades. To use simultaneous updates, on Publish Microsoft Azure Application dialog, go to
the Advanced Settings tab, check the Deployment update checkbox, and then click on the set-
tings link besides the checkbox, as shown in Figure 3.25.

On Deployment Settings dialog, select the simultaneous update option, and then click OK
to continue (Figure 3.26).

3.4.3 Multiple Deployment Environments
MACS provides two deployment environments—production and staging—for cloud ser-
vices. In previous examples, all our operations were performed directly on the production

Figure 3.24 Deployment environment in Use prompt.

Cloud Service Fundamentals ◾ 71

environment. However, in most cases, you would like your new version to go through a series
of tests before it can be deployed on to your production environment. The staging environment
provides a parallel environment to your production environment, allowing you to test new bits
in an equivalent environment before release. Once you are satisfied with the new version, you
can swap the two environments by a process called VIP swap. VIP swap promotes your stag-
ing environment to production, and makes your production environment staging for future
versions. MACS defines a public virtual IP address (VIP) for each deployment environment.
Production VIP is mapped to [cloud service name].cloudapp.net. Staging VIP is mapped to a
[cloud service identifier].cloudapp.net. The VIP swap simply switches the DNS mapping between
the two IP addresses.

You can choose different environments during deployments, as shown in Figure 3.27.
On Microsoft Azure Management Portal, you can use the INSTANCE page to inspect the

two environments separately.

Figure 3.25 Deployment method settings link.

Figure 3.26 Simultaneous update option.

72 ◾ Zen of Cloud

Example 3.3: Cloud Service Deployments and VIP Swaps on Management Portal

Difficulty: *

In Section 3.3, we introduced how a cloud service was packaged into a .cspkg file and a .cscfg file
during the deployment process. Visual Studio automates the packing and uploading processes for
us so we do not have to deal with files directly. On the other hand, you can use Microsoft Azure
Management Portal to manually upload and deploy these two files. I assume you have made some
changes to the cloud service in Example 3.1 and want to deploy the new version to the staging
environment. Here are the steps:

 1. Launch Visual Studio as an administrator. Open the solution of Example 3.1.
 2. Right-click the cloud service project, and choose the Package menu (Figure 3.28).
 3. On Package Microsoft Azure Application dialog, click on the Package button. We will

introduce the options on this dialog in the next section (Figure 3.29).
 4. The results of this operation are the .cspkg file and .cscfg file (Figure 3.30).
 5. Open Microsoft Azure Management Portal. Open the INSTNACE page of your cloud

service, and then click the STAGING link to switch to the staging environment page. You
can see we have not deployed any versions to staging yet. Click on the UPLOAD icon on the
command bar to start deployment (Figure 3.31).

 6. On Upload a package dialog, enter a name for your deployment. We recommend using a
name that reflects your version number for easy identification. Then, choose the local .cspkg
file and .cscfg file you created in step 3. Finally, check the Deploy even if one or more
roles contain a single instance check box, and click on the check button to complete the
operation (Figure 3.32).

Note: Microsoft Azure’s SLAs apply only to roles with more than one instance. Single-
instance services are not protected by SLA.

 7. After the deployment is done, you can observe the two environments on the cloud services’
dashboard. Note that the URL to the staging environment differs from the production

Figure 3.27 Choose deployment environment.

Cloud Service Fundamentals ◾ 73

URL. You can click on the staging URL to test your service on the staging environment
(Figure 3.33).

 8. Now let us assume the new version has passed your tests on the staging environment. You can
click on the SWAP icon to perform VIP swap between production and staging (Figure 3.34).

 9. Microsoft Azure Management Portal will present a brief summary of the swap operation.
Click YES to swap (Figure 3.35).

Figure 3.28 Package a cloud service in Visual Studio.

Figure 3.29 Package Microsoft Azure Application dialog.

Figure 3.30 Packaged files.

74 ◾ Zen of Cloud

3.5 instances and Load Balancing
The deployment process is a process of mapping a cloud service project to run virtual machines.
During development, you define the logical definition of the cloud service and implement service
logic details. During deployment, the logical definition and the compiled code are instantiated on
actual virtual machines.

Figure 3.31 Staging page on Management Portal.

Figure 3.32 Upload a package dialog.

Cloud Service Fundamentals ◾ 75

3.5.1 Instances
An instance is the role code running on a virtual machine. For example, in the cloud service men-
tioned earlier, we defined a web role. During the deployment process, the role is instantiated as a
virtual machine running the Windows operation system, and the role code is deployed on the IIS
running on this virtual machine. A role can be instantiated into multiple instances as well. For
instance, if we find that we need more capacity to satisfy customer needs, we can modify our cloud

Figure 3.33 Staging environment dashboard on Management Portal.

Figure 3.34 the SWAP icon on the command bar.

Figure 3.35 ViP swap summary.

76 ◾ Zen of Cloud

service definition and specify our web role to be deployed on two virtual machines. This is the so-
called horizontal scaling. When we deploy this updated definition to Microsoft Azure, Microsoft
Azure will launch two identical virtual machines, and deploy the same role code to these two
machines. As depicted in Figure 3.36, the role to the left is mapped to two instances, while the
role to the right is mapped to a single instance.

3.5.2 Load Balancing
Careful readers may have noticed that in Figure 3.36, when a role is mapped to multiple instances,
these instances have the same endpoint, and share the system workload via this common endpoint.
This kind of work sharing is also called load balancing. Load balancing is an important concept of
system scalability. Readers should review Section 1.2.3 if needed.

How is load balancing achieved? By introducing load balancers. A load balancer connects to
multiple role instances and evenly distributes system workloads to these instances. When a cloud
service is deployed on Microsoft Azure, the endpoints defined on the roles are actually provided
by load balancers. When a user request arrives, the load balancer forward the request to the cor-
responding virtual machine via its private network address. On the left side of Figure 3.37, we
have a single web role in a cloud service, with the following address: http://samplesite.haishibai.com.
When the service is deployed to Microsoft Azure, MACS starts two instances (virtual machines)
for the role based on our service definition, and joins the two instances to a load balancer. The load
balancer provides the http://samplesite.haishibai.com endpoint, and evenly distributes user requests
to these two instances.

Note: A common algorithm used in load balancing is round-robin, which means to send
jobs to participants in turn. In other words, all participating virtual machines are given the

Cloud service (runtime)

Instance Instance
Instance

Role Role

Cloud service (definition)

Figure 3.36 Mapping between roles and instances.

Cloud Service Fundamentals ◾ 77

It is very easy to configure horizontal scaling in Visual Studio. We will learn the steps in the next
example.

Example 3.4: Horizontal scaling of Cloud Services

Difficulty: **

 1. Launch Visual Studio as an administrator. Open the solution file in Example 3.1.
 2. Before we scale the service, let us modify the source code to display the current instance id

on the web page so that we can observe which instance is serving the current page.
 3. In the web role project, open HomeController.cs under the Controllers folder. We will

modify its Index() method and use the RoleEnvironment class, which is provided by
Microsoft.WindowsAzure.Service Runtime.dll assembly from Microsoft Azure SDK, to
retrieve the identifier of the current instance:

using Microsoft.WindowsAzure.ServiceRuntime;
...
public ActionResult Index()
{
 Vi ewBag.Message = "Current instance": + RoleEnvironment.

CurrentRoleInstance.Id;
 return View();
}

same number of requests. Such algorithms often assume that all the virtual machines are
homogeneous, and they do not consider the actual loads on these machines. Obviously, such
assumptions greatly simplify the algorithm. To put the algorithm into a formula, we can use

i = (i + 1) mod n

where i is the index of the next virtual machine to be picked, and n is the total number of
virtual machines.

Cloud service
(definition)

Web
instance 1

Web
instance 2

Load balancer
Web role

http://samplesite.haishibai.com
http://samplesite.haishibai.com

Figure 3.37 Cloud service load balancing.

78 ◾ Zen of Cloud

 4. Save changes to HomeController.cs.
 5. Modify the Views\Home\Index.cshtml file to display the message:

…
<div class="jumbotron">
 <h1>ASP.NET</h1>
 <p class="lead">@ViewBag.Message</p>
 <p><a href="http://asp.net" class="btn btn-primary btn-
large">Learn more »</p>
</div>
…

 6. Then, double-click the web role to open its Properties page (Figure 3.38).
 7. On the Properties page, you can scale your web role by simply changing the Instance

count field. In addition, you can vertically scale the service by change virtual machine
sizes. Here we will increase the instance count to 2, and then press Ctrl + S to save the file
(Figure 3.39).

 8. Redeploy the service. After the deployment is done, open the site in a browser. You can see
the current instance id on the page. Figure 3.40 shows that the current page is rendered by
the WebRole1_IN_0 instance. Note that the result you observe may be different, as two
instances have equal opportunities to handle the request.

 9. Refresh the page several times. You will notice that sometimes the page is provided by
instance WebRole1_IN_0, while at other times the page is provided by WebRole1_IN_1.
This shows that the load balancer is at work.

Figure 3.38 Web role in the cloud service.

Cloud Service Fundamentals ◾ 79

3.6 Configuration File and Definition File
We have already learned that the result of cloud service packaging is a .cspkg file and a .cscfg file.
The .cspkg file is a standard zip file, which contains compiled role code and content files, as well as
the .csdef file from the cloud service project. The .cscfg file comes from the .cscfg file in the cloud
service project. The packaging process can be simply illustrated in Figure 3.41.

Then, what are the .csdef file and the .cscfg file? First, let us examine their locations in a cloud
service project. Figure 3.42 shows that the cloud service has one .csdef file and two .cscfg files.
All these files are XML files, and together they define the topology of the cloud service as well as
its configurations. For example, the instance count we just modified is recorded in the .cscfg file.

Now let us look into the structures of these files.

Figure 3.39 instance count on Properties page.

Figure 3.40 Web role id displayed on page.

80 ◾ Zen of Cloud

3.6.1 Cloud Service Definition File (.csdef)
The cloud service definition file defines the topology of a cloud service, including its roles, end-
points, and supported settings (actual setting values are saved in the .cscfg file). The schema of this
XML document is fairly straightforward. For example, the service definition file for a cloud service
containing a single web role looks as shown in Code List 3.1.

Code List 3.1 defines a web role (line 1), which has an endpoint based on HTTP, port 80
(line 10). Although you can directly modify this file, we suggest you use graphic UI to edit this
file when possible to avoid possible mistakes caused by manual changes.

Because of limitations of space, we will not go through the entire schema here. The only attribute
we want to mention here is the upgradeDomainCount attribute on the root <ServiceDefinition>

.cspkg

Choose

(Compiled)
Role code/contents

.csdef

.cscfg .cscfg

Figure 3.41 Cloud service packaging process.

Figure 3.42 Locations of .csdef file and .cscfg file.

Cloud Service Fundamentals ◾ 81

element. You can control the number of update domains (see Section 3.4.1) using this attribute.
The default value of this attribute is 5.

Note: Refer to http://msdn.microsoft.com/en-us/library/windowsazure/ee758711.aspx for
the complete schema of this file.

3.6.2 Cloud Service Configuration File (.cscfg)
You can add multiple service configuration files (.cscfg) to a cloud service project. When you use
Microsoft Azure SDK to create a new cloud service project, the toolkit automatically adds two
configuration files, which are Cloud.cscfg and Local.cscfg. Multiple configuration files allow you to
use different configuration settings for different environments, such as local environment, staging
environment, and production environment. When you package a cloud service, you can choose
the configuration file you want to use (see step 3 in Example 3.3).

The .cscfg file specifies instance counts, settings, as well as digital certificates used by the roles.
Let us study the file schema in detail, starting from the root element:

 ◾ Root: ServiceConfiguration
 The attributes on this element are listed in Table 3.1.
 In addition to these attributes, the element can contain one or more role elements, and an

optional network configuration element (NetworkConfiguraiton).
 ◾ Role element

 Attributes on the role element are listed in Table 3.2.
 The role element supports several child elements. Here we will pick several frequently used ones.

 − Instances element
The Instances element has a single attribute on it (Table 3.3).

CODE LIST 3.1 CLOUD SERVICE DEFINITION FILE EXAMPLE

 1: <WebRole name="MvcWebRole1" vmsize="Small">
 2: <Sites>
 3: <Site name="Web">
 4: <Bindings>
 5: <Bi nding name="Endpoint1" endpointName= "Endpoint1" />
 6: </Bindings>
 7: </Site>
 8: </Sites>
 9: <Endpoints>
10: <In putEndpoint name="Endpoint1" protocol="http"

port="80" />
11: </Endpoints>
12: <Imports>
13: …
14: </Imports>
15: </WebRole>

82 ◾ Zen of Cloud

table 3.1 ServiceConfiguration Attributes

Attribute Type Description

serviceName String Name of the cloud service. This name has to match with the
one in the service definition file.

osFamily String [Optional] OS family of the virtual machine. Currently
supported values are:
1— Use Windows Server 2008 SP2 compatible OS (this is the

default value)
2—Use Windows Server 2008 R2 compatible OS
3—Use Windows Server 2012 compatible OS

osVersion String [Optional] Version number of the virtual machine OS. The
version you pick has to be compatible with Microsoft Azure
SDK.a You can specify an exact version number, or use “*” to
represent the latest version. When you use “*” as version
number, Microsoft Azure will automatically upgrade your OS
to the latest available releases (within the same OS family)
when maintaining your virtual machines. We generally
recommend using “*” as a version number. If you want to
use a specific version, you need to set the string to:

WA-GUEST-OS-M.m_YYYYMM-nn

where M.m is the major version and minor version; YYYY is
year; MM is month; and nn is a sequence number. For
example, WA-GUEST-OS-1.17-201112-01. Refer to footnote “a”
for a detailed version list. Note: This list changes over time.

schemaVersion String [Optional] Schema version of the .cscfg file. Because you can
have multiple versions of Microsoft Azure SDKs installed on
the same machine, this attribute helps Visual Studio to
correctly handle definition files from different SDK versions.

a http://msdn.microsoft.com/en-us/library/windowsazure/ee758710.aspx.

table 3.2 Role Attributes

Attribute Type Description

name String Name of the role. This name has to match with the one in the cloud
service definition file.

vmName String Name of the virtual machine. This value will be used as the DNS name
of the virtual machine. This value follows the RFC1123 standard, but is
constrained to 10 characters.

table 3.3 instances Attributes

Attribute Type Description

count Integer Number of instances

Cloud Service Fundamentals ◾ 83

 − ConfigurationSettings element
This element holds custom settings of a cloud service. For example, the following
ConfigurationSettings element defines two settings: Microsoft.WindowsAzure.Plugins.
Diagnostics. ConnectionString (this is added by default. We will come back to this in
Section 4.6) and a custom-defined MySetting:

<ConfigurationSettings>
 <S etting name="Microsoft.WindowsAzure.Plugins.Diagnostics.

ConnectionString"
 value="UseDevelopmentStorage=true" />
 <Setting name="MySetting" value="Value of my setting" />
</ConfigurationSettings>

You should avoid editing this file manually, because the setting names in this file have to
match with the ones defined in the .csdef file. Manual edits are very error-prone. Instead,
you should use the role’s Properties page to edit these settings, as shown in Figure 3.43.

Using this UI, you can edit the setting values simultaneously for all configuration
files, or use the Service Configuration dropdown box to select the specific configura-
tion file to edit. All your edits will be kept in sync with the .csdef file. In addition, if
you select <Manage…> from the dropdown box, you can create new configuration files
by making copies of existing ones. As you can see, using the UI is a much easier and
effective way for editing settings.

In your code, you can read these settings using the Microsoft.WindowsAzure.
CloudConfigurationManager class. For example,

using Microsoft.WindowsAzure;
…
var value = CloudConfigurationManager.GetSetting("MySettings");

Figure 3.43 Use Properties page to edit custom settings.

84 ◾ Zen of Cloud

Once the cloud service is deployed to Microsoft Azure, system administrators can mod-
ify these settings using Microsoft Azure Management Portal (Figure 3.44).

 ◾ NetworkConfiguration element
 This element defines virtual network and DNS settings. We discuss this element in

Section 4.3.

Note: Refer to http://msdn.microsoft.com/en-us/library/windowsazure/ee758710.aspx for a
complete schema of this file.

3.7 Summary
In this chapter, we introduced basic concepts of cloud service, including roles, instances, and their
relationship. Through a series of examples, we studied basic processes of cloud service development
and deployment. We also experienced how to horizontally scale our cloud services and how to
update cloud services using different methods. Finally, we introduced how to use multiple deploy-
ment environments, and how to define and use custom settings.

Figure 3.44 Manage settings on Microsoft Azure Management Portal.

85

Chapter 4

Advanced Cloud Service

4.1 endpoint types
When we define a web role in a cloud service project, the development tool automatically defines
an endpoint based on HTTP and port 80. This endpoint is a publicly accessible endpoint called
Input Endpoint, and its DNS address is [cloud service name].cloudapp.net. This is why we can
access the website via the following address: http://[cloud service name].cloudapp.net (default port
80 is omitted).

As mentioned earlier, a cloud service role can have multiple endpoints. These endpoints can
use different protocols. For example, many websites need to support HTTPS, and some other ser-
vices may need to support TCP and UDP, etc. In addition to Input Endpoints, you can also find
Internal Endpoints and InstanceInput Endpoints on cloud services.

4.1.1 Input Endpoint
Input endpoints are public endpoints. Service consumers can access these endpoints at the follow-
ing address:

[protocol]://[cloud service name].cloudapp.net:[port]

These endpoints are provided by load balancers. User requests are evenly distributed to all role instances.
In other words, any two requests, no matter how close they are in time, might be routed to different
instances. For example, displaying an HTML page with a single picture requires two HTTP GET
requests, one to download HTML tags and the other to download image bits. These two requests may
be served by different instances. Another example is that two consecutive AJAX calls may be handled
by different instances as well. This is why websites should not save their states in memory, but should
save states in a shared storage such as a database, a storage service, or a cache cluster.

4.1.2 Internal Endpoint
In Section 3.2, we introduced the concept that, as a container of roles, a cloud service also defines
a security boundary. Within this security boundary, role instances can exchange data via Internal

86 ◾ Zen of Cloud

Endpoints. There are two main differences between Input Endpoints and Internal Endpoints:
first, Internal Endpoints are private to cloud role instances only, while Input Endpoints are pub-
licly accessible; second, Internal Endpoints do not go through load balancers because they are
designed for instance-level communications. We have already learned that you can address Input
Endpoints via a cloud service’s DNS addresses. However, when we use Internal Endpoints, how do
we find the address of a specific instance that uses dynamic IP? We will explain the process with
an example in Section 4.3.

4.1.3 InstanceInput Endpoint
InstanceInput Endpoints are special in several different ways:

 ◾ InstanceInput Endpoints are publicly accessible endpoints.
 ◾ InstanceInput Endpoints do not go through load balancers.
 ◾ An InstanceInput Endpoint has an associated port range. Service consumers can directly

access different instances by picking different ports in this range. For example, a cloud
service role defines an HTTP-based InstanceInput endpoint with port range from 8080 to
8084, and the role has five instances. Then, service consumers can use http://[cloud service
name].cloudapp.net:8080 to access the first instance, http://[cloud service name].cloudapp.
net:8081 to access the second instance, http://[cloud service name].cloudapp.net:8082 to
access the third instance, and so on.

Now, let us study endpoints with an example.

Example 4.1: Configure an HTTPS Endpoint for a website

Difficulty: ****
Security Socket Layer (SSL) is a common protocol for secured data exchange over the Internet. In
this example, we define an HTTPS endpoint for a website. To complete this exercise, we need to
acquire a digital certificate first. Of course, you can request a certificate from a Certificate Authority
(CA), but here we use a self-signed certificate.

 1. Launch Developer Command Prompt for VS2012 as an administrator.
 2. Go to the folder where you want to save your certificate.
 3. Use the command

makecert –r –pe –n "CN=azurec3−1.cloudapp.net" –sky 1 "azurecert.
cer" –sv "azurecert.pvk" –ss My –sr LocalMachine

 to create a self-signed certificate. During the process you will be asked to enter a password for
the private key three times, as shown in Figure 4.1.

 4. Then, use the command

pvk2pfx –pvk "azurecert.pvk" –spc "azurecert.cer" –pfx "zurecert.
pfx" –pi [cert password]

 to convert the certificate into a pfx format.
 Now, we will add the certificate to our cloud service project, and define a new HTTPS

for the web role.

Advanced Cloud Service ◾ 87

 5. Launch Visual Studio as an administrator. Open the solution in Example 3.1.
 6. In cloud service project, double click the web role to open its Properties page. Then, click

the Certificate tab to the left of the screen to open the certificate configuration page. Click
on the Add Certificate link to add a new row to the table. In the newly created row, enter
MyCertificate as Name, and pick LocalMachine as Store Location. Finally, click on the
[…] button in the Thumbprint column, pick the certificate you just created, and click the
OK button, as shown in Figure 4.2.

 7. Press Ctrl + S to save the file.
 8. Click on the Endpoints tab to switch to the endpoint configuration page. Then, click on the

Add Endpoint link. In the new row, enter SSLEndpoint as Name, pick https as Protocol,
enter 443 as Public Port, and pick MyCertificate for SSL Certificate Name, as shown in
Figure 4.3.

 9. Press Ctrl + S to save the file.
 Before we deploy the updated cloud service to Microsoft Azure, we need to upload the cer-

tificate used by the web role to Microsoft Azure.

Figure 4.1 Create a self-issued certificate.

Figure 4.2 Add a certificate to the web role.

88 ◾ Zen of Cloud

 10. Sign in to Microsoft Azure Management Portal. Select the cloud service you want to update.
Then, go to its CERTIFICATES page. Here, click the UPLOAD icon on the command bar,
as shown in Figure 4.4.

 11. On Upload certificate dialog, pick the .pfx file you created in step 3. Enter the password,
and then click the check button to upload the certificate, as shown in Figure 4.5.

 Now we can redeploy the cloud service and test the HTTPS endpoint.
 12. Redeploy the cloud service in Visual Studio.
 13. Once the deployment is done, open the browser, and enter the address https://[cloud service

name].cloudapp.net to open the website.
 14. Because we are using a self-signed certificate, the browser will throw a certificate warning, as

shown in Figure 4.6. If you want to eliminate this warning, you have to import the certificate
to Trusted Root Certification Authorities.

 15. Here, simply click the Continue to this website link to continue to the site, as shown in
Figure 4.7.

4.2 Worker Role
As a container, a cloud service can hold different types of roles. Here, we will introduce a new role
type, the worker role. Different from web roles, which provide website services, worker roles are

Figure 4.3 Add HttPS endpoint.

Figure 4.4 Upload icon on the command bar.

Advanced Cloud Service ◾ 89

often used to provide backend services. For example, in a multitier application, you can use a web
role for a presentation layer, and a worker role to implement business logics. This kind of separa-
tion of concerns is one of the basic principles in designing maintainable, extensible systems. We
discuss multitier applications in detail in Chapter 8.

Of course, the responsibilities of a web role or a worker role are not fixed and can vary from
project to project. For example, a worker role can directly take user inputs by defining Input
Endpoints. A web role may provide a REST-ful API or a SOAP-based web service without offering
any user interfaces. In other words, the types of service provided by a role are not constrained by
role types. It is just that web roles are optimized for web sites and worker roles are optimized for
backend services.

Figure 4.6 Certificate warning.

Figure 4.5 Upload certificate dialog.

90 ◾ Zen of Cloud

4.2.1 Worker Role Application Scenarios
Common application scenarios of worker roles include the following:

 ◾ Processing jobs sent from a web role.
 When we design a cloud service, we should separate complex tasks from the web role to

ensure responsiveness of the user interface. The web role can offload complex tasks to a
worker role via direct or indirect communication, so it can free up its resources to accept
more user requests. We discuss different communication options among roles in Section 4.3.
In addition, once we separate the frontend and the backend, we can scale different layers
separately in order to optimize resource utilization. For example, a system may need only 1
web role instance to take user inputs, but 10 worker role instances to process complex tasks.
When system load decreases, we can scale the worker role down to 4–5 instances to save on
renting costs. On the contrary, if we find the presentation layer too busy, we can spin up
more web role instances to ensure the performance of the user interface.

 ◾ Running web services such as WCF services.
 The worker role code runs as a separate process on a Windows virtual machine. So, in

theory, most Windows-based services can be loaded to a worker role. For services that need
prerequisites to be installed, we can use startup tasks, which we cover in Section 4.5. By
directly exposing Input Endpoints, you can run various cloud-based web services, such as
WCF services, on worker roles.

 Now, let us study how to use a worker role with an example.

Example 4.2: A worker role with a UDP endpoint

Difficulty: ****
In this example, we will define a new cloud service with a worker role. The worker role will take user
requests through a UDP endpoint.

 1. Launch Visual Studio as an administrator. Create a new cloud service project.
 2. On New Microsoft Azure Cloud Service dialog, add a Worker Role to the cloud service,

as shown in Figure 4.8.

Figure 4.7 open a website via HttPS endpoint.

Advanced Cloud Service ◾ 91

 3. This operation defines a new worker role in your cloud service. The worker role is added to
the solution as a separate class library with the name WorkerRole1. The class library contains
only one WorkerRole class. When the worker role instance is started, Microsoft Azure will
call its OnStart() method and then its Run() method. The default Run() method is nothing
but an empty loop:

public override void Run()
{
 // This is a sample worker implementation. Replace with your

logic.
 Tr ace.TraceInformation("WorkerRole1 entry point called",

"Information");

 while (true)
 {
 Thread.Sleep(10000);
 Trace.TraceInformation("Working", "Information");
 }
}

 4. Modify the Run() method. We will listen to port 8080, attach current role instance id to the
requests we get, and then send them back. The modified Run() method is shown as Code
List 4.1.

 5. In the cloud service project, double click on WorkerRole1 to open its Properties page.
 6. Click on the Endpoints tab to open the endpoint page. Click on the Add Endpoint link.

Then, in the newly added record, enter UDPEndpoint as Name, select udp for Protocol,
enter 8080 for both Public Port and Private Port, as shown in Figure 4.9. Press Ctrl + S
to save changes.

 7. Now let us add a test client. Right click the solution, and select the Add→New Project menu
(see Figure 4.10).

 8. On Add New Project dialog, select Console Application under the Windows category.
Enter TestClient as project name, and click the OK button to continue, as shown in
Figure 4.11.

Figure 4.8 Add a worker role to a cloud service.

92 ◾ Zen of Cloud

 9. Modify Program.cs in the TestClient project. The modified code is shown as Code List 4.2.
 10. Now we are ready to test the solution locally. Right-click on the solution, and select the Set

StartUp Projects menu (Figure 4.12).
 11. On the Solution Property Pages dialog, select the Multiple startup projects option. Then

set both the cloud project (not the WorkerRole1 project) and the TestClient project to Start.
Click the OK button to confirm, as shown in Figure 4.13.

 12. Press F5 to start the test. If you see a Windows Security Alert (because the worker role pro-
cess attempts to listen to 8080 port), click Allow access to continue, as shown in Figure 4.14.

 13. Enter a couple of test strings in the console application, and observe feedback from the
worker role, as shown in Figure 4.15. Enter an empty string to stop the test client.

 If you are interested, you can deploy the service to Microsoft Azure. By default, the worker
role runs under an account without administrative privileges, which cannot listen to an arbi-
trary port. There are two ways to solve this problem. One is to modify ACL in the startup

CODE LIST 4.1 MODIFIED RUN() METHOD

public override void Run()
{
 var endpoint = new IPEndPoint(IPAddress.Any, 8080);
 var client = new UdpClient(endpoint);
 IPEndPoint sender = null;
 while (true)
 {
 try
 {
 var data = client.Receive(ref sender);
 var text = Encoding.UTF8.GetString(data);
 var bytes = Encoding.UTF8.GetBytes(string.Format
 ("Instance {0} plays back: {1}",
 RoleEnvironment.CurrentRoleInstance.Id, text));
 client.Send(bytes, bytes.Length, sender);
 }
 catch
 {
 Thread.Sleep(1000);
 }
 }
}

Figure 4.9 Add UDP endpoint.

Advanced Cloud Service ◾ 93

task to grant the account privilege to listen to the UDP protocol, 8080 port. An easier way
is to modify the cloud definition file (.csdef) to launch the worker role with administrative
privilege. Here, we use the second method.

 14. Modify the ServiceDefinition.csdef file under the cloud service project. Add

<Runtime executionContext="elevated" />

 under <WorkerRole> element. This allows the worker role process to be launched with
administrative privileges.

Figure 4.10 Add test client project.

Figure 4.11 Create a new Console Application.

94 ◾ Zen of Cloud

CODE LIST 4.2 UDP TEST CLIENT

using System.Net.Sockets;
…
static void Main(string[] args)
{
 var address = IPAddress.Parse("127.0.0.1");
 var endpoint = new IPEndPoint(address, 8080);
 va r socket = new Socket(AddressFamily.InterNetwork, SocketType.

Dgram,
 ProtocolType.Udp);
 var buffer = new byte[1024];
 while (true)
 {
 Console.Write("Enter text to be sent: ");
 var payload = Console.ReadLine();
 if (string.IsNullOrEmpty(payload))
 return;
 var data = Encoding.UTF8.GetBytes(payload);
 socket.SendTo(data, endpoint);
 int size = socket.Receive(buffer);
 Co nsole.WriteLine(Encoding.UTF8.GetString(buffer, 0, size));
 }
}

Figure 4.12 Set Startup Projects menu.

Advanced Cloud Service ◾ 95

Figure 4.13 Set multiple startup projects.

Figure 4.14 Windows Security Alert.

Figure 4.15 test client running result.

96 ◾ Zen of Cloud

 15. Deploy the service to Microsoft Azure.
 16. Modify the first line of the test client:

var address = Dns.GetHostAddresses("[cloud service name].cloudapp.
net")[0];

 17. Set the test application as a startup project, and then press F5 to test.

4.3 inter-Role Communications
In the previous example, the worker role directly takes user inputs from an Input Endpoint. In
reality, a more common topology is to use a web role to interact with users, and handle tasks that
consume large amount of resources or CPU cycles on a worker role. Before we learn the exact
techniques, let us summarize different options for inter-role communication.

4.3.1 Options for Inter-Role Communication
Common options for inter-role communication include the following:

 ◾ Direct communication
 Roles can communicate with each other directly not only using their Input Endpoints,

but also their Internal Endpoints. We will learn about using Internal Endpoints in
Example 4.3.

 ◾ Communication through a shared storage
 Roles can also exchange data through a shared storage, such as a database, a virtual disk,

a distributed cache cluster, or a storage service. We introduce different storage services in
Chapter 5 and caching in Chapter 11.

 ◾ Communication through a job queue
 Another commonly used method for inter-role communication is to use a job queue. A job

creator (such as a web role) adds jobs to a queue. A job processor (such as a worker role)
reads jobs from the queue and handles them. Queues have several significant advantages
compared to other communication techniques, which we discuss further in Chapter 15.

 Now, let us implement a direct communication scenario. You will see an example of using
queues in Chapter 15.

Example 4.3: Using a Web Frontend with a Backend Service

Difficulty: ***
Compared to the examples described earlier, this example has a more complex architecture, as we
are going to implement a multitiered system. The system consists of a web role as the presentation
layer and a worker role as the business layer. To simplify the process, instead of starting a new
example, we will continue with Example 4.2. We will use a web frontend to replace the original
console client. The modified system architecture is shown in Figure 4.16.

From a service consumer’s perspective, the whole service only provides a single HTTP endpoint.
Internals of the system are totally hidden from the consumer. In other words, as long as the service
keeps its Input Endpoints (and API) stable, its consumers are not affected by any internal changes.
Now let us study the exact process:

Advanced Cloud Service ◾ 97

 1. Launch Visual Studio as an administrator. Open the solution in Example 4.2.
 2. In Solution Explorer, expand the cloud service project. Then, right click on the Roles folder,

and select Add→New Web Role Project, as shown in Figure 4.17.
 3. Choose the ASP.NET MVC Web Role or ASP.NET Web Role template, and then click

the Add button to add the new web role, as shown in Figure 4.18. This is also the common
method to add a new role to an existing cloud service project.

 4. Choose the Internet Application template, and then click the OK button, as shown in
Figure 4.19. Depends on your ASP.NET MVC version, you may see a dialog with different
options. Select “MVC” in this case.

 5. Edit index.cshtml under the Views\Home folder in the new web role. We will implement a
simple web page to send and receive messages from the backend server. The modified code is
shown in Code List 4.3.

Note: Here, we use jQuery to write the client-side script. jQuery is a cross-browser JavaScript
library that has gained great popularity in the past few years.

Business layer
(on a worker role)

Internal UDP endpoint

Presentation layer
(on a web role)

HTTP

Figure 4.16 System architecture of example 4.3.

Figure 4.17 Add new Web Role Project menu.

98 ◾ Zen of Cloud

 6. Modify HomeController.cs under the Controllers folder of the web role project. We’ll
add a new SendMessage() method for the client to call. The method code is shown in Code
List 4.4.

 One thing to note is that in line 3 in Code List 4.4, we use the name of the role, WorkerRole,
to locate the worker role. If your worker role has a different name, you have to update your
code accordingly. In addition, to make it shorter, the code cuts some corners. For instance,
the code uses Instance[0] to choose the first instance of the worker role. This means that the

Figure 4.18 Add a new Web Role to a cloud service.

Figure 4.19 internet Application template.

Advanced Cloud Service ◾ 99

code does not work well in a multi-instance deployment, as only the first worker role instance
is used. In addition, the code assumes the UDP endpoint as the first endpoint on the worker
role (InstanceEndpoints.First()). Look out for these pitfalls if your project structure is different.

 7. Modify the worker role to change the original Input Endpoint to Internal Endpoint, as
shown in Figure 4.20.

 8. Press Ctrl + S to save the file.
 9. Set the cloud service project as the startup project, and then press F5 to launch it.
 10. Enter some test messages on the web page, and observe the responses from the backend server

(see Figure 4.21).

CODE LIST 4.3 SIMPLE MESSAGING WEB PAGE

@{
 ViewBag.Title = "Home Page";
}
<div id="log"></div>

<label>Enter message to send: </label>
<input type="text" id="message" style="width:300px;" />
<input type="button" id="send" value="Send" />
@section Scripts {
 <script>
 $('#send').click(function () {
 $.getJSON('/Home/SendMessage?message=' +
 en codeURIComponent(message.value),

function (data) {
 $('#log').append(data).

append('
');
 });
 });
 </script>
}

CODE LIST 4.4 SENDMESSAGE() METHOD

 1:public ActionResult SendMessage(string message)
 2:{
 3: va r endpoint = RoleEnvironment.Roles["WorkerRole1"].

Instances[0].
 4: InstanceEndpoints.First().Value.IPEndpoint;
 5: va r socket = new Socket(AddressFamily.InterNetwork,

SocketType.Dgram,
 6: ProtocolType.Udp);
 7: var buffer = new byte[1024];
 8: var data = Encoding.UTF8.GetBytes(message);
 9: socket.SendTo(data, endpoint);
10: int size = socket.Receive(buffer);
11: return Json(Encoding.UTF8.GetString(buffer, 0, size),
12: JsonRequestBehavior.AllowGet);
13:}

100 ◾ Zen of Cloud

4.4 Role Lifecycle
In Example 4.2, we described how Microsoft Azure will invoke the OnStart() method and then
the Run() method on a role instance when launching it. In this section, we will examine role life-
cycle in more detail. First, let us go behind the scenes and see how a role is deployed on a virtual
machine and launched.

4.4.1 Process of Deploying and Launching a Role Instance
The following is a summary of the process to deploy and launch a role instance:

 1. Microsoft Azure picks a physical server with sufficient CPU cores from its running servers
pool or starts up a new server that can satisfy the requirements of running the role instance.

Figure 4.20 Modify endpoint type.

Figure 4.21 test results on the website.

Advanced Cloud Service ◾ 101

 2. Microsoft Azure copies the service package and its configuration file to the hosting server. A
Host Agent running on the host server launches the virtual machine.

 3. A WaAppAgent program on the virtual machine configures the virtual environment and
then launches a WaHostBootstrapper process.

 4. If the role has startup tasks, WaHostBootstrapper executes these tasks and waits for all simple
tasks to finish successfully (see Section 4.5).

 5. If the role is a web role, WaHostBootstrapper launches an IISConfigurator process to configure
IIS.

 6. If the role is a worker role, WaHostBootstrapper launches a WaWorkerHost process. If the role
is a web role, WaHostBootstrapper launches a WaIISHost process.

 7. These processes load the corresponding role assembly and search for a RoleEntityPoint sub-
class implementation.

 8. The OnStart() method is called.
 9. The Run() method is called. At the same time, the instance is marked as “Ready” and is

joined to the load balancer.
 10. If the Run() method exits, the OnStop() method is called, and the WaWorkerHost/WAIISHost

process stops. The role instance is recycled.
 11. Otherwise, WaHostBootstrapper starts to monitor status changes of the instance.

As we have learned earlier, it is not necessary for a web role to implement a RoleEntityPoint
subclass. This is because the web role instance is deployed to IIS, and it is IIS that takes and
forwards user requests. So, when we removed the WebRole.cs from the web role project earlier,
the website still worked. However, if your web role does provide a RoleEntityPoint subclass,
you need to ensure that the Run() method does not exit; otherwise, the role instance will be
recycled.

4.4.2 Role Instance Statuses
The lifecycle of a role instance is depicted in Figure 4.22.

Figure 4.22 shows that a role instance can be in either Busy status or Ready status. Only when
an instance is under the Ready status does it participate in job distributions from the load balancer.

Methods Events Statuses

Onstart
Status check

Status check

Status check
Stop

Busy

Ready

Busy

Run

OnstopM
ic

ro
so

ft
A

zu
re

 ca
lls

Processing requests

Role lifecycle

Figure 4.22 Role lifecycle.

102 ◾ Zen of Cloud

If you want to programmatically change the role status, you can respond to the StatusCheck event on
the RoleEnvironment class, and use the Setbusy() method on the RoleInstanceStatusCheckEventArgs
parameter to mark the instance as Busy. Then, the load balancer will not send jobs to the instance
until WaHostBootstrapper performs the next status check.

If the Run() method exits, or throws an unhandled exception, WaHostBootstrapper will attempt
to restart your role instance. Of course, during the restart process, the instance cannot take in
any user requests because it is not in the Ready status. If WaHostBootstrapper itself crashes, or the
virtual machine crashes, Microsoft Azure will restart the virtual machine and relaunch the role
instance. Finally, if the hosting server fails, Microsoft Azure will deploy the instance to a healthy
server after several attempts to restore the failing server. This comprehensive autorecovery mecha-
nism increases the availability of your role instance.

When Microsoft Azure shuts down a role instance, it will trigger a Stopping event, and will
invoke the OnStop() method on the instance. This gives the code a chance to perform the neces-
sary operations, such as releasing allocated resources, before the instance is stopped.

Finally, if you want to force your instance to restart, you can call the RoleEnvironment.
RequestRecycle() method to inform Microsoft Azure to restart your instance.

4.5 Startup tasks
In Section 4.1.1, we mentioned startup tasks. The so-called startup tasks are scripts or programs
that run before the role instance starts. A startup task can be an executable (.exe), or a batch file
(.cmd). You can customize the virtual machine running the role instance via startup tasks:

 ◾ Install prerequisites
 ◾ Register COM components
 ◾ Modify the Registry
 ◾ Run PowerShell scripts
 ◾ Launch backend processes

4.5.1 Defining Startup Tasks
You can define startup tasks in cloud service definition files. For example, the following code list
defines a startup task for a web role. The task is to run a batch file named Startup.cmd. You can
define multiple startup tasks under the <Startup> element, and they will be executed in the order
they are defined.

<WebRole name="MvcWebRole1" vmsize="Small">
 …
 <Startup>
 <T ask commandLine="Startup.cmd"

executionContext="elevated"
 taskType="simple" />
 </Startup>
</WebRole>

Advanced Cloud Service ◾ 103

4.5.2 Startup Task Properties
A startup task has the following properties:

 ◾ commandLine. This property defines the executable or the script to be executed. Note that
the script file has to be saved in ANSI format.

 ◾ executionContext. A startup task can run with (default) limited or elevated privileges.
With this property set to “limited,” the startup task runs under the same privileges as
what the role instance has. With the property set to “elevated,” the startup task runs
with administrative privileges. If you need to install software, register COM compo-
nents, or modify the Registry in the startup task, you need to set its execution context
to “elevated.”

 ◾ taskType. A startup task can be one of three types: simple, background, or foreground.
Microsoft Azure waits for all simple tasks to successfully return (with return value 0) before
it starts the role instance. If any of the simple startup tasks fails (do not return 0) or hang,
role instance launch will be canceled. On the other hand, Microsoft Azure does not wait for
background tasks but continues to launch the role instance. The foreground tasks are similar
to the background tasks. The only difference is that a role instance cannot be recycled before
foreground tasks are completed.

Note: While writing a batch script, ensure that the script returns 0 upon success. Other-
wise, the role instance may fail to start. Commonly, you would add to the end of your
script:
EXIT /B 0

Next, we will learn startup task usage through an example.

Example 4.4: Startup Task—convert an image to ASCII web page

Difficulty: ***
In this example, we create a simple website, which converts user-submitted images to ASCII char-
acters and displays them on the page. The conversion is done by a separate Windows Console
application, which takes an image via HTTP and converts the image to corresponding ASCII
characters. The returned ASCII presentation is wrapped in an HTML <div> tag, so it can be
directly displayed on a web page. This example simulates the scenario when you want to package
a legacy program and provide a new web frontend for it. The architecture of the completed system
is shown as Figure 4.23.

 1. Launch Visual Studio as an administrator. Create a new Microsoft Azure Cloud Service with
a single ASP.NET MVC 4 web role (using the Internet Application template).

 2. Add a new Windows Console Application to the solution. Add references to System.Drawing
assembly and System.Web assembly. Then, open its Program.cs file, and add the namespace
references:

using System.Net;
using System.Drawing;

104 ◾ Zen of Cloud

 3. Implement the Main() method, which starts up an HTTPListener to take in user requests:

static void Main(string[] args)
{
 HttpListener listener = new HttpListener();
 listener.Prefixes.Add("http://*:8080/");
 listener.Start();
 while (listener.IsListening)
 {
 var context = listener.GetContext();
 ProcessRequest(context);
 }
 listener.Stop();
}

 4. Implement the ProcessRequest() method, which takes an image, converts it to a grayscale
image with about 70 levels of intensities, and then maps the pixels to corresponding ASCII
characters. The method returns an HTML <div> tag, which contains rows of ASCII charac-
ters representing the original image. The complete source code is shown in Code List 4.5.

 5. Modify the Index.cshtml file under the Views\Home folder of the web role project. Replace
the entire file content with the code in Code List 4.6.

 6. Modify the HomeController.cs file under the Controllers folder of the web role project.
Add a new method as shown in Code List 4.7. The method allows the user to upload an
image, and then submits the image to the background program for processing. Finally, it
returns the HTML result to the browser.

 7. Rebuild the solution to ensure everything builds at this point.
 8. Right-click the web role project, and select the Add→Existing Item menu. Then, add the

Console application output file bin\debug\ConsoleApplication1.exe (assuming you did not
change the project name) to the root folder of the web role.

Business layer:
startup task

(legacy application)

Internal HTTP endpoint

Presentation layer:
web role

(ASP.NETMVC4)

HTTP

Figure 4.23 Architecture of example 4.4.

Advanced Cloud Service ◾ 105

CODE LIST 4.5 IMAGE TO ASCII CONVERSION

//Characters in this string represent different intensities
const string grayPixel =
"$ @B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\\|()1{}[]?-
_+~<>i!lI;:,\"^''. ";

static void ProcessRequest(HttpListenerContext context)
{
 Bitmap picture = new Bitmap(context.Request.InputStream);
 int pixSize = 1;//How many pixels an ASCII character covers
 st ring retVal = "<div style=\"font-family:SimHei;font-

size:11px;\">";
 //A nalyze the pixels one by one and covert them to corresponding

ASCII characters
 string retLine = "";
 for (int y = 0; y < picture.Height; y += pixSize)
 {
 retLine = "";
 for (int x = 0; x < picture.Width; x += pixSize)
 {
 int grayscale = 0;
 int pixCount = 0;
 for (int j = 0; j < pixSize; j++)
 {
 for (int i = 0; i < pixSize; i++)
 {
 int indx = x + i;
 int indy = y + j;
 if (indy < picture.Height && indx < picture.

Width)
 {
 var pixel = picture.GetPixel(indx, indy);
 grayscale += (int)(pixel.R * .3
 + pixel.G * .59 + pixel.B * .11);
 pixCount++;
 }
 }
 }
 int grayLevel = (int)(grayscale / pixCount / 3.66);
 retLine += grayPixel[grayLevel];
 }
 re tVal += System.Web.HttpUtility.HtmlEncode(retLine) +

"
";
 }
 retVal += "</div>";
 //Generate HTML output
 byte[] b = Encoding.ASCII.GetBytes(retVal);
 context.Response.StatusCode = 200;

106 ◾ Zen of Cloud

 9. Right-click the added file, and select the Properties menu. Then, in its Properties window,
choose Copy to Output Directory to Copy always.

 10. Right-click the Console application project, and select the Properties menu. Configure a
post-build event to copy the Console application to the web role to avoid repeating step 8, as
shown in Figure 4.24.

 11. Right-click the solution, and select the Project Dependencies menu. Then, on the Project
Dependencies window, ensure the web role project depends on the Console application

 context.Response.KeepAlive = false;
 context.Response.ContentLength64 = b.Length;
 var output = context.Response.OutputStream;
 output.Write(b, 0, b.Length);
 context.Response.Close();
}

CODE LIST 4.6 IMAGE UPLOAD UI

@{
 ViewBag.Title = "Home Page";
}
@using (Html.BeginForm("Index", "Home", FormMethod.Post,
 new { encType = "multipart/form-data" }))
{
 <input type="file" name="file" />
 <input type="submit" value="Upload" />
}

CODE LIST 4.7 IMAGE UPLOAD METHOD

[HttpPost]
public ActionResult Index(HttpPostedFileBase file)
{
 var result = "";
 if (file != null && file.ContentLength > 0)
 {
 Bitmap picture = new Bitmap(file.InputStream);
 WebClient client = new WebClient();
 ImageConverter converter = new ImageConverter();
 var retData = client.UploadData("http://localhost:8080/",
 (byte[])converter.ConvertTo(picture, typeof(byte[])));
 result = Encoding.ASCII.GetString(retData);
 }
 return Content(result);
}

Advanced Cloud Service ◾ 107

(see Figure 4.25) so that you can always get the latest Console application packaged in your
web role.

 12. Modify the cloud service definition file (ServiceDefinition.csdef) in the cloud service
project to add a startup task definition under the <WebRole> element. This task launches
ConsoleApplication1.exe with administrative privileges in the background before the web
role starts:

Figure 4.24 Copy the Console application to the web role upon successful builds.

Figure 4.25 Setting up project dependencies.

108 ◾ Zen of Cloud

<Startup>
<Task commandLine="ConsoleApplication1.exe"
executionContext="elevated"
 taskType="background"/>
</Startup>

 13. Press F5 to launch the application. On the web page, click on the Browse button and pick
a local image (we recommend using an image with a smaller size, not exceeding 500 × 500
pixels). Then, click the Upload button to upload the image, as shown in Figure 4.26.

 14. Figure 4.27 shows the result page.

Figure 4.26 image upload Ui.

Figure 4.27 Sample result of conversion.

Advanced Cloud Service ◾ 109

4.6 Diagnostics and Debug
Microsoft Azure provides comprehensive support for cloud service monitoring, diagnostics, and
debugging. Cloud service developers receive strong support in both development and operation.

4.6.1 Debugging Locally
As you have already learned, Microsoft Azure SDK provides local emulators for computing as
well as storage services. No matter whether you are developing a simple website or a complex
multitiered solution, you can debug your cloud services just like debugging a local program, such
as using breakpoints and stepped execution, inspecting thread states and call stacks, etc. In addi-
tion, you can observe tracing information recorded by System.Diagnostics.Trace statements in the
Compute Emulator UI (see Example 3.1). For example, the default implementation of the Run()
method in a worker role is instrumented with tracing statements:

public override void Run()
{
 Tr ace.TraceInformation("WorkerRole1 entry point called",

"Information");

 while (true)
 {
 Thread.Sleep(10000);
 Trace.TraceInformation("Working", "Information");
 }
}

When the worker role runs, you can observe the tracing information on the Compute Emulator
UI, as shown in Figure 4.28. If you are already familiar with Visual Studio and coding with ASP.
NET, ASP.NET MVC, C#, or VB, you can apply the skills and tools you already know to cloud
service developments. We recommend that you fully use the advantages of such knowledge and
ensure your cloud service works as designed locally before deploying to Microsoft Azure.

4.6.2 Microsoft Azure Diagnostics
Debugging on cloud platforms is a bit more complex. Traditionally, the main method of server-
side diagnostics is to collect various log files. In other words, services record tracing information
to local file systems or databases so it can be available for diagnostics when problems happen.
However, you cannot simply rely on the log files written on virtual machines hosted by Microsoft
Azure. For example, when a virtual machine crashes, your role instance running on the machine
will be migrated to a new, healthy virtual machine and it will lose all the local files. So, on
Microsoft Azure, you are never supposed to store permanent data locally on virtual machines
(though you can save temporary data) as these machines are supported to be stateless. Obviously,
one easy solution to this problem is to write the logs directly to an external storage so we can
store the data independently. However, the frequent service calls to external storage services may
jeopardize system performance. To compromise for this, the log files can be saved to local stor-
ages temporarily, and a separate process will transfer the logs periodically to external storages on

110 ◾ Zen of Cloud

a schedule or on demand. This method provides not only a balance between performance and log
persistence but also the capability to record events such as role instance crashes because it runs
independently from role instances.

Microsoft Azure Diagnostics is a Microsoft Azure module, which you can import to your
cloud services to gain diagnostic capabilities. You can configure Microsoft Azure Diagnostics in
code as well as in configuration files. You can also modify the settings remotely during operation.
Once enabled, Microsoft Azure Diagnostics agents run on the role instance virtual machines to
collect tracing information, and transmit tracing data to user-specified storage accounts. Next, let
us learn the basics of configuring and using Microsoft Azure Diagnostics.

Example 4.5: Configure Microsoft Azure Diagnostics

Difficulty: **
In this example, we learn how to configure Microsoft Azure Diagnostics for a simple cloud service,
and how to transfer log data to Microsoft Azure Storage services. We use Microsoft Azure Table
Storage in this example. As we have not introduced the service yet, you can simply consider these
tables to be database tables (this understanding is actually wrong—but sufficient for now). We
introduce Microsoft Azure Storage services in Chapter 6.

 1. Launch Visual Studio as an administrator. Create a new cloud service with a worker role with
the name WorkerRole1.

 2. By default, your cloud service roles have already imported the Microsoft Azure Diagnostics
module. You can observe how this is done in the ServiceDefinition.csdef file:

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition ...>
 <WorkerRole name="WorkerRole1" vmsize="Small">

Figure 4.28 tracing information in Compute emulator Ui.

Advanced Cloud Service ◾ 111

 3. You can configure Microsoft Azure Diagnostics on your role’s Properties page. As shown in
Figure 4.29, we have changed Microsoft Azure Diagnostics to transfer all logged information
to emulated storage account. By default, the transfer interval is 1 min. You can further cus-
tomize the settings by switching the option to Custom plan, and then use the Edit button
to customize the diagnostics plan.

 In a real deployment, you should configure the target Microsoft Azure Storage account
to an actual storage account. But for local tests, you can use the emulated storage services
provided by Microsoft Azure SDK. This is the default setting when you create a new cloud
service. The location of the storage service is defined by a connection string (similar to a
database connection string), which is read from the Microsoft.WindowsAzure.Plugins.
Diagnostics.ConnectionString setting of the role. For an emulated environment, the con-
nection string is fixed to “UseDevelopmentStorage=true” (see Figure 4.29).

 4. Press F5 to launch the service. After the service has been running for several minutes, you can
examine the logs that are transferred to the emulated storage service. In Visual Studio, select
VIEW→Server Explorer to open the Server Explorer, which provides integrated management
UI for many Microsoft Azure services within Visual Studio. Expand the tree to the Microsoft
Azure→Storage→(Development)→Tables node, which contains a WADLogsTable (see
Figure 4.30). This is where outputs from System.Diagnostics.Trace calls are recorded.

 5. Double click WADLogsTable and you will see the data in the table (see Figure 4.31; we have
dragged the Message column to the left to fit it on the screen).

 6. Once the service has been launched, you will see a diagnostics.wadcfg file appearing
under the role node in Solution Explorer. This file contains Microsoft Azure Diagnostics
settings. The changes you make in step 3 are reflected in this file (Figure 4.32).

 <Imports>
 <Import moduleName="Diagnostics" />
 </Imports>
 </WorkerRole>
</ServiceDefinition>

Figure 4.29 Microsoft Azure Diagnostics configuration.

112 ◾ Zen of Cloud

 7. The diagnostics.wadcfg file is an XML file. You can double click it to view its contents.
Although you can edit this file manually, it is highly recommended to change the settings
using the custom plan editor on the role’s Properties page (see Figure 4.29). For example,
Figure 4.33 shows the specifications to trace a couple of performance counters and to transfer
their values by 1 min intervals.

Note: On the Properties page, there is a checkbox with a very long text: Update devel-
opment storage connection strings for Diagnostics and Caching with Microsoft Azure

Figure 4.30 WADLogstable in Server explorer.

Figure 4.31 Sample log entries.

Advanced Cloud Service ◾ 113

Microsoft Azure Diagnostics information is saved in different locations based on the types of logged
data, as shown in Table 4.1 (we have seen WADLogsTable in the previous example).

storage account credentials when publishing to Microsoft Azure. This means that when you
deploy a cloud service, Microsoft Azure SDK will update connection string settings (such
as Microsoft.WindowsAzure.Plugins.Diagnostics.ConnecionString) to use actual Microsoft
Azure Storage accounts.

Figure 4.32 diagnostics.wadcfg file.

Figure 4.33 Custom diagnostics plan editor.

114 ◾ Zen of Cloud

4.6.3 IntelliTrace
IntelliTrace allows you to collect detailed diagnostics data on your role instances. While
debugging, you can download IntelliTrace data from Microsoft Azure and play it back in
Visual Studio. In other words, you will be able to reconstruct the running context when an
error occurs on the server and step through the code. The running environment of a cloud ser-
vice role instance is dynamic. Triggering conditions often disappear after errors have occurred
and are hard to be reestablished. By using IntelliTrace, you can capture the server states and
play them back in Visual Studio so that you can easily find out what exactly happened when
the error occurred. So, IntelliTrace is a very powerful feature that you should leverage for
diagnostics.

Note: Using IntelliTrace requires Visual Studio Ultimate edition.

Now let us learn how to use IntelliTrace with an example.

Example 4.6: IntelliTrace—Greatest Common Divisor

Difficulty: ****
In this example, we will create a simple website. The website takes two positive integers from the
user and calculates their greatest common divisor. Of course, the exact feature is not important—
we just need a simple scenario to learn about the debugging process.

 1. Launch Visual Studio as an administrator. Create a new cloud service project with an ASP.
NET/Web Forms web role (note that in this case we are not using ASP.NET MVC).

 2. Replace the code in Default.aspx with the code in Code List 4.8.
 3. Edit Default.aspx.cs to modify the server-side code to add the methods in Code List 4.9.

table 4.1 Microsoft Azure Diagnostics information Storage Locations

Diagnostics Data Supported Role Types Service Location

Microsoft Azure Logs Web, Worker Table WADLogsTable

IIS Logs Web BLOB Wad-iis-logfiles

Windows
Diagnostics Logs

Web, Worker Table WADLogsTable

Failed Requests Logs Web BLOB Wad-iis-failedreqlogfiles

Windows Event Logs Web, Worker Table WADWindowsEventLogTable

Performance
Counters

Web, Worker Table WADPerformanceCountersTable

Crash Dumps Web, Worker BLOB Wad-crash-dumps

Custom Logs Web, Worker BLOB User-defined location

Advanced Cloud Service ◾ 115

CODE LIST 4.8 USER INTERFACE

<%@ Page Title="Home Page" Language="C#"
 MasterPageFile="~/Site.Master" AutoEventWireup="true"
 CodeBehind="Default.aspx.cs" Inherits="WebRole1._Default" %>
 <asp:Content runat="server" ID="BodyContent"
 ContentPlaceHolderID="MainContent">
 <table>
 <tr><td>Value 1</td>
 <t d><asp:TextBox ID="valueA" runat="server">

</asp:TextBox></td></tr>
 <tr><td>Value 2</td>
 <t d><asp:TextBox ID="valueB" runat="server">

</asp:TextBox></td></tr>
 <tr><td>Result</td>
 <t d><asp:TextBox ID="result" runat="server">

</asp:TextBox></td></tr>
 <t r><td colspan="2"><asp:Button ID="calculate"

runat="server"
 Te xt="Calculate" OnClick="calculate_Click" />

</td></tr>
 </table>
 </asp:Content>

CODE LIST 4.9 BACK END LOGIC

protected void calculate_Click(object sender, EventArgs e)
{
 re sult.Text = findGreatestCommonDivisor(valueA.Text, valueB.

Text);
}
private string findGreatestCommonDivisor(string value1, string value2)
{
 return euclid(int.Parse(value1), int.Parse(value2)).ToString();
}
private int euclid(int a, int b)
{
 if (b == 0)
 return a;
 else
 return euclid(b, a % b);
}

116 ◾ Zen of Cloud

 4. To use IntelliTrace, you need to enable it in your cloud service configuration and deploy the
service to Microsoft Azure, as shown in Figure 4.34.

 5. Once the service has been deployed, it is ready for some simple tests, as shown in Figure 4.35.
 6. Now, enter an invalid number, for instance “teapot,” in the Value 1 field. Click on the

Calculate button again. This will cause the website to crash, as shown in Figure 4.36.
 7. In many circumstances, when a customer reports a problem, he often cannot provide

detailed information, especially when the service has crashed. When the service is restored,
the trigger condition has gone, making recreating and debugging such problems very dif-
ficult. Fortunately, we have enabled IntelliTrace, and now we can use IntelliTrace to help us
to fix the problem. In Visual Studio, select the VIEW→Server Explorer menu to open the
Server Explorer. Expand to the role instance, right-click, and select the View IntelliTrace
Logs menu, as shown in Figure 4.37.

 8. You can observe IntelliTrace Logs being downloaded in the Microsoft Azure Active Log
window (see Figure 4.38).

 9. Once IntelliTrace Logs are downloaded, the IntelliTrace Summary view will be displayed.
In the Exception data section, you will see the “Input string was not in a correct format”
exception, as shown in Figure 4.39.

 10. Double click on the exception data, and you will be directly taken to the line where the
exception is thrown (see Figure 4.40). This is already very cool. For a simple case like this,
this feature is already sufficient for us to discover and resolve the problem. However, for more
complex cases, we might need a little more assistance.

 11. In Visual Studio, select the DEBUG→Windows→Call Stack menu to open the call stack
view. You can easily see that when the findGreatestCommonDivisor method is called, the
first parameter is set to “teapot.” In other words, not only can you see the detailed call
stack, you can also examine the exact parameter values when a function is called (see
Figure 4.41).

 12. IntelliTrace provides very rich debugging features, which cannot be covered in full here.
Instead, we will present just one more IntelliTrace feature. In Visual Studio, select the
DEBUG→Windows→IntelliTrace Event menu. In this view, you can see the series
of events before the error occurred, from the page being loaded to the user clicking the
Calculate button, as shown in Figure 4.42.

Figure 4.34 enabling intellitrace when publishing a cloud service.

Advanced Cloud Service ◾ 117

Figure 4.35 Positive test result.

Figure 4.36 Crashed website.

118 ◾ Zen of Cloud

Figure 4.38 Downloading intellitrace Logs.

Figure 4.39 intellitrace summary.

Figure 4.37 View intellitrace Logs menu in Server explorer.

Advanced Cloud Service ◾ 119

4.6.4 Monitoring Cloud Service
Microsoft Azure also provides means of monitoring the health of your cloud services with
Microsoft Azure Management Portal and third-party tools.

 ◾ Customizing cloud service monitor
 Similar to the DASHBOARD view and the MONITOR view of Azure Websites (see

Section 2.8.2), MACS also allows you to monitor your cloud services on Microsoft Azure
Management Portal (see Figure 4.43).

Figure 4.40 intellitrace takes the developer to the line where exception is thrown.

Figure 4.41 Parameter details in intellitrace Logs.

120 ◾ Zen of Cloud

 You can use the ADD METRICS icon to define data series to be presented on the moni-
tor view. By default you can choose from the following:

 − CPU Percentage
 − Disk Read Bytes/Sec
 − Disk Write Bytes/Sec
 − Network In
 − Network Out

Figure 4.42 intellitrace event view.

Figure 4.43 Monitoring cloud service on Microsoft Azure Management Portal.

Advanced Cloud Service ◾ 121

 In addition, for each performance counter, you can select to observe the data series of each
instance, or average values across all instances, as shown in Figure 4.44.

 On the cloud service’s CONFIGURE page, you can configure monitoring levels (mini-
mal or verbose). With minimal level, Microsoft Azure only provides the metrics introduced
earlier. With verbose level, you can not only collect more metrics, but also define custom
performance counters. However, because recording additional data requires more storage
space, you will be warned when you make the change, as shown in Figure 4.45.

 ◾ Customizing monitoring view
 You can easily customize the monitoring view. At the upper-right corner of the view, you

can change the time period of the monitoring window. You can also choose whether the
data axis should be RELATIVE or ABSOLUTE. In relative mode, each data series is nor-
malized to the percentage of its value range. In absolute mode, each data series is presented
in its original values. Relative mode works better when you want to observe each data line
separately, and absolute mode is more suitable to compare different data series. In addition,
you can click on the check icon besides a data line (see the arrow in Figure 4.46) to add it to
the view or to remove it from the view.

 ◾ Alerts
 On the monitor view of a cloud service, you can define alert rules based on different metrics.

When a monitored value exceeds the threshold you specify, an alert email will be sent to the
email addresses of your choice. For example, to get email alerts when the server is too busy,
you can follow these steps:

 − On the monitor view of a cloud service, ensure CPU Percentage is selected. Then, click
the ADD RULE icon on the command bar.

 − On CREATE ALERT RULE dialog, enter a name and a description for your new rule,
and click the next icon to continue (Figure 4.47).

Figure 4.44 Select metrics to monitor.

122 ◾ Zen of Cloud

 − On the next screen, set the notification condition to be greater than 80%, and alert
action to send an email to the service administrator. Click the check icon to save the
rule (Figure 4.48).

 ◾ Other monitoring methods
 Microsoft Azure Management Portal is not the only way to monitor cloud services. You

can also choose to use other first-party or third-party tools to monitor your Microsoft
Azure resources. For example, Microsoft System Center provides a Management Pack for
Microsoft Azure, which allows you to manage and monitor your Microsoft Azure resources
within the System Center (you can download the pack from http://www.microsoft.com/
en-us/download/details.aspx?id=38414).

 With Microsoft Azure gaining popularity, an increasing number of third-party tools have
emerged in the market to provide Microsoft Azure monitoring capabilities, such as New
Relic and AppDynamics. Figure 4.49 is a sample view from New Relic that displays regional
performance metrics collected using distributed workloads.

Figure 4.46 Customize monitoring view.

Figure 4.45 Change cloud service monitoring settings.

Advanced Cloud Service ◾ 123

4.7 Developer Community
Developing and managing cloud services is a relatively new field. It is unavoidable to encounter
various problems in the process of learning and using it. There is no single book or documentation
that can answer all the questions. Fortunately, there have always been developer communities who
are interested in Microsoft’s development techniques and tools. An active developer’s community
is very helpful to improve your development speed and efficiency. To learn about Microsoft Azure,

Figure 4.47 Defining a new alert rule.

Figure 4.48 Defining notification condition.

124 ◾ Zen of Cloud

you can find detailed documentation and rich demos at www.windowsazure.com and MSDN, as
well as hundreds of teaching videos on Channel 9. In addition, you can exchange knowledge and
experience at various developer communities such as the MSDN forum and Stack Overflow. We
highly recommend that you take part in the community and bring your experience, proposals,
and ideas to the community. Last but not the least, you can of course Bing the answers to your
questions.

Microsoft also provides various supportive services to the developers and software vendors
of different levels, such as the DreamSpark program dedicated to the students, the BizSpark
program for startups, the MVP program for individuals, MSDN subscriptions, and differ-
ent certifications. Many MSDN subscription levels include a certain number of free-of-charge
Microsoft Azure services. If you are a subscriber of MSDN, you may contact your administrator
for more information regarding this benefit. You can also consult http://www.windowsazure.
com/en-us/pricing/member-offers/msdn-benefits/ for details. Table 4.2 provides a list of some of
these resources.

Figure 4.49 Sample view from new Relic.

table 4.2 Microsoft Azure Resources

Service Site

BizSpark http://www.microsoft.com/bizspark/

Channel 9 http://channel9.msdn.com/

DreamSpark https://www.dreamspark.com/

Imagine Cup http://www.imaginecup.com

MSDN http://msdn.microsoft.com/en-us

Advanced Cloud Service ◾ 125

4.8 Summary
In this chapter, we learned about some advanced cloud service topics, including different types of
endpoints, startup tasks, diagnostics, and service monitoring. We also learned how to use worker
roles, and how to combine web roles and worker roles to construct multitiered cloud service solu-
tions. We also examined role lifecycle in detail and practiced different ways for inter-role commu-
nications. Finally, we reviewed some of the community resources that you can leverage to improve
your skills of cloud service development.

127

Chapter 5

Data Storage
Relational Database

In this chapter and the next, we will focus on data storage. We will first learn about relational
databases on Microsoft Azure, and about NoSQL storages in Chapter 6. Before we go into
further details, we will start with a brief overview of all data storage solutions provided by
Microsoft Azure.

5.1 Microsoft Azure Data Storage Solutions
Microsoft Azure provides several data storage solutions for cloud service developers. You can
choose to use any of the solutions based on the requirements and constraints of your project, or
combine multiple solutions for your storage needs.

 ◾ Running an SQL Server on virtual machines
 If you want to use the complete feature set of an SQL Server, you can run an SQL Server

instances on Microsoft Azure virtual machines. When you provision a new virtual machine
on Microsoft Azure, you can pick from several built-in SQL Server images (see Figure 5.1).
Note that you will need to bring your own SQL Server license.

Note: Microsoft Azure provides high availability and disaster recovery capabilities for an
SQL Server running on Microsoft Azure virtual machines. As this is a developer-oriented
book, we will not dig deeper into these subjects. Interested readers may visit http://msdn.
microsoft.com/en-us/library/windowsazure/jj870962.aspx for further details.

 ◾ SQL Database
 An SQL Database is a relational database SaaS provided by Microsoft. Instead of managing

any underlying infrastructures, you simply subscribe to the service and use it via an

128 ◾ Zen of Cloud

endpoint. Because the endpoint supports Tabular Data Stream (TDS) protocol, which is
the same protocol used by an SQL Server, you can use an SQL Database just as if you were
connected to a regular SQL Server instance, as shown in Figure 5.2. Although there are
some differences between an SQL Database and an SQL Server, many of the existing SQL
Server clients can be directly used against SQL Databases, given that database schemas on
both services are compatible.

Figure 5.1 Built-in SQL Server images.

SQL database SQL server

TDSTDS

Client

Figure 5.2 Protocol compatibility of SQL Database and SQL Server.

Data Storage: Relational Database ◾ 129

 Because of the protocol-level compatibility between an SQL Server and an SQL Database,
you can apply your existing SQL Server knowledge, skills, and tools to an SQL Database.

 ◾ Microsoft Azure Storage Services
 Microsoft Azure provides a rich set of NoSQL storage services, including tables, virtual

disks, BLOBs, and queues. These scalable services provide tremendous throughputs and
outstanding performance to satisfy the requirements of storing, sharing, and accessing large
amounts of data. You can access these services using their client libraries. You can also access
these services via REST-style service calls and management API. We will study these ser-
vices in Chapter 6.

5.2 SQL Database overview
An SQL Database is a relational database service based on SQL Server technologies. It provides
convenient, secure, self-maintained, highly available, and highly scalable relational database
services for your cloud services.

 ◾ Maintainability
 When using an SQL Database, because you only subscribe to a service endpoint, you do not

need to manage any virtual or physical servers or install or update any software. Instead, you
can provision a new database service in seconds and adjust your subscription at any time. In
other words, instead of spending time on the tedious work of managing servers, you can put
all your time and energy into service development and operation.

 ◾ Availability
 An SQL Database automatically maintains two backups of your databases to ensure high

availability. When there is a problem in the infrastructure, an SQL Database fails over to
backups to ensure the availability of your data tier (Microsoft Azure’s SLA guarantees 99.9%
availability).

 ◾ Scalability
 Once you share your data, you can horizontally scale your data tier as the data volume

increases, in order to avoid data tier becoming the bottleneck of your system. On the other
hand, because you only pay for what you use, you can achieve optimum system performance
with minimum cost.

 ◾ Familiar development environments and tools
 Just as we mentioned in Section 5.1, an SQL Database is highly compatible with an SQL

Server. All your SQL Server–related knowledge, such as T-SQL, stored procedures, ADO.
Net, Entity Framework, ODBC, and SQL Server Management Studio, can be applied to an
SQL Database.

5.2.1 Differences between an SQL Database and an SQL Server
Although an SQL Server and an SQL Database are highly compatible, there are still some
differences between the two. Some of these differences are caused by the differences in their
architectures, and some others are caused by imparity in their feature sets. For developers, some
noticeable differences include the following: an SQL Database does not support distributed
queries; it does not support .NET CLR types; it does not support backup and restore (you can
use Data Sync and Data-Tier Applications to achieve backups and restores—see Section 5.4),

130 ◾ Zen of Cloud

and it requires a clustered index on every table. You may consult MSDN documents for a
detailed list of the differences.

The biggest difference between an SQL Database and an SQL Server is that an SQL Database
is an SaaS provided by Microsoft Azure, while an SQL Server often refers to the combination of a
physical server and the database software (SQL Server) running on it. When you purchase a data-
base server and install an SQL Server on it, you have total control over the hardware and the soft-
ware, and all hardware resources are dedicated to you. When you subscribe to an SQL Database,
however, all you get is an SQL Server–compatible endpoint. You don’t need to or have access to the
underlying computing and storage resources. For example, if you need more storage on your SQL
Server, you can install additional data disks to the server, as long as there is enough space for the
additional hardware. On the other hand, an SQL Database provides two service types: Web and
Business. With the Web type, the maximum database size is 5 GB, and with the Business type,
your database can grow up to 150 GB. These are hard limits that cannot be exceeded. If you need
more storage, you will have to share your data on multiple databases.

At the time of writing this book, Microsoft Azure also provides an SQL Database Premium
service (preview), which uses dedicated resource to back up your database service. Dedicated
resource provides better performance predictability compared to the Web and Business editions.
You may refer to www.windowsazure.com for further details.

Now let us learn the basics of using an SQL Database.

Example 5.1: SQL Database—online ordering system

Difficulty: ***
In this example, we create a simple online ordering system. The system allows users to manage their
customers as well as their orders. Customer information and orders are saved in an SQL Database,
which contains three tables: Customer, Order, and OrderDetail.

First, let us create the database.

 1. Sign in to Microsoft Azure Management Portal.
 2. Click on the NEW icon on the command bar. Then, select DATA SERVICES→SQL

DATABASE→CUSTOM CREATE. On NEW DATABASE—CUSTOM CREATE
dialog, enter MyCustomerOrderDB as NAME, select New SQL database server as
SERVER, and then click the right arrow to continue, as shown in Figure 5.3.

 3. On the next page, configure the user credentials for authentication, pick a region where you
want the database to be hosted (usually this should be the same region as where your cloud
services are hosted to reduce network latency), and then click the check button to create the
database, as shown in Figure 5.4.

Note: By default, the new SQL database server does not allow access from any IP addresses.
You will need to explicitly white-list IP addresses you want to grant accesses to. By checking
the last checkbox on this dialog, you are granting access to the database server from any
virtual machines hosting your own cloud services. You still need to authenticate to the server
during connection.

 4. After the database has been created, open its details page, where you can get a lot of database-
related information, including the database server name. In this case, the server name is
dyo4zfnv67.database.windows.net, which is autogenerated and cannot be changed, as shown
in Figure 5.5. Click on the Design your SQL database link.

Data Storage: Relational Database ◾ 131

Figure 5.3 Creating a new SQL Database.

Figure 5.4 Setup credentials for the new SQL database.

132 ◾ Zen of Cloud

 5. The portal will prompt you to add the IP address of your current computer to the firewall
rules so that you can manage an SQL Database from your current computer. Click YES to
continue, as shown in Figure 5.6.

Note: You can manage an SQL Database server firewall settings on its CONFIGURE page.
Note that the database management page and the server management page are different. To
switch to the server view, click SQL DATABASE in the navigation bar, and then switch to
SERVERS list, or click on the server name in the SERVER column in the DATABASES
list, as shown in Figure 5.7.

 6. Once the firewall rule is changed, you will be asked if you want to continue with database
design. Click YES to continue, as shown in Figure 5.8.

Note: If your browser blocks the pop-up, expand Options for this site and select Always
allow (see Figure 5.9). Then repeat step 4.

Figure 5.6 Adding firewall rule for current computer.

Figure 5.5 SQL Database details page.

Data Storage: Relational Database ◾ 133

 7. An SQL Database management UI will open in a pop-up window (you will need to install/
enable Silverlight). Use the user credentials you have entered in step 3 to log on, as shown in
Figure 5.10.

 8. Click the New table link, as shown in Figure 5.11.
 9. Create a new Customer table, which contains an ID column, a Name column, and an

Address column, with ID column being the primary key. The table schema is shown in
Figure 5.12. After editing, click on the Save button to save the table schema.

 10. Similarly, create an Order table, as shown in Figure 5.13.

Tip: Click on the Tables link at the top of the screen to return to the table list.

 11. Once the table schema is saved, click on the Indexes and Keys link. Then, click on the Add
a foreign key relationship link on the page.

 12. In the pop-up frame, specify the ID column in the Customer table as the foreign key to
CustomerID column (as shown in Figure 5.14). Click the Save button to save the foreign key.

 13. The foreign key constraint should look like the diagram in Figure 5.15.
 14. Create the OrderDetails table. Then, set the ID column of the Order table as the foreign key

to its OrderID column, as shown in Figure 5.16.

Figure 5.7 Switching to server view.

Figure 5.8 Confirmation message of firewall rule change.

Figure 5.9 Browser pop-up settings.

134 ◾ Zen of Cloud

 15. Click the Design link at the lower-left corner of the page, or the Tables link at the top of
the page to return to the tables list. Hover your mouse to the right of any table, and click the
Dependencies link, as shown in Figure 5.17.

 16. On the Dependencies view, click the Show all dependencies link (see Figure 5.18). This
view allows you to examine dependency relationships among your tables (you can zoom in
or out by dragging the slider bar at the lower-left corner).

 17. Now we are ready to create two default records in the Customer table. Click on the New
Query icon at the top of the screen. Then, in the online T-SQL editor, enter the SQL state-
ments as shown in Figure 5.19. Then, click the Run icon to execute the script. The execution
result is shown in Figure 5.19.

 18. As you have experienced the basics of using an SQL Database management UI, you can now
close the pop-up window.

Figure 5.10 SQL Database log on page.

Figure 5.11 new table link to create a new table.

Data Storage: Relational Database ◾ 135

Figure 5.13 order table.

Figure 5.14 Defining the foreign key.

Figure 5.12 Create Customer table.

136 ◾ Zen of Cloud

Next, we will create a new online cloud service, which allows users to manage customers and
orders online.

 1. Launch Visual Studio as an administrator. Create a new cloud service project with an ASP.
NET MVC 4 Web Role (using the Internet Application template).

 2. Right-click the Web Role project, and select the Add→New Item menu. Then, select the
Data→ADO.NET Entity Data Model template. Enter MyCustomerDB.edmx as Name,
and click the Add button to add the data model.

Figure 5.15 Foreign key constraint.

Figure 5.16 orderDetail table.

Figure 5.17 Dependencies link.

Data Storage: Relational Database ◾ 137

 3. On Entity Data Model Wizard dialog, select Generate from database, and then click the
Next button to continue.

 4. On the next window, click on the New Connection button. Then, on the Choose Data
Source pop-up, select Microsoft SQL Server, and then click the Continue button, as
shown in Figure 5.20.

 5. On Connection Properties dialog, enter your SQL Database server name (as in step 4).
Then, select the Use SQL Server Authentication option (an SQL Database does not support
Windows Authentication) and enter your user name and password (as you entered in step 3).
Check Save my password checkbox. Then, select MyCustomerOrderDB in the Select or
enter a database name field, and click the OK button to continue (Figure 5.21).

 6. Back on the Entity Data Model Wizard, select Yes, include the sensitive data in the con-
nection string option, and click the Next button to continue.

 7. Select all tables. Then click on the Finish button to continue, as shown in Figure 5.22.
 8. If script security warnings show up, click OK to continue.
 9. Rebuild the solution.
 10. In the Web Role project, right-click the Controllers folder, and select the

Add→Controller menu.

Figure 5.18 Dependencies view.

Figure 5.19 Sample t-SQL execution result.

138 ◾ Zen of Cloud

 11. On Add Controller dialog, set the controller name as OrderController. Select MVC con-
troller with read/write actions and view, using Entity Framework template. Then, select
Order as Model class, and MyCustomerOrderDBEntities as Data context class. Click the
Add button to complete the operation, as shown in Figure 5.23.

 12. Press F5 to launch the application. Once the website is launched, enter the address
http://12.0.0.1:81/Order (your port might be different). Click the Create New link, as shown
in Figure 5.24.

 13. On the new order page, pick a customer, and enter a description for the order. Then, click on
the Create button, as shown in Figure 5.25.

 14. This takes you back to the orders view, where you can add, edit, or delete orders, as shown in
Figure 5.26.

 15. Similarly, add a CustomerController and an OrderDetailController.
 16. Modify Views\Shared_Layout.cshtml to add links to the entities under the <nav> tag:

…
<nav>
<ul id="menu">

@Html.ActionLink("Home", "Index", "Home")
@Html.ActionLink("Customers", "Index", "Customer")
@Html.ActionLink("Orders", "Index", "Order")
@Html.ActionLink("Order Details", "Index",

"OrderDetail")
…

Figure 5.20 entity Data Model Wizard.

Data Storage: Relational Database ◾ 139

 17. The completed system is shown in Figure 5.27.

By now, we have successfully made use of an SQL Database in our cloud service. If you had worked
with ASP.NET and Entity Framework before, you would have discovered that the steps are identical
to the steps of using an SQL Server database. In the next example, we will continue to improve our
application.

5.3 SQL Database Management and optimization
We used an online designer to design the database schema in Example 5.1. In this section, we will
learn to use several different tools for managing and optimizing an SQL Database.

5.3.1 SQL Server Management Studio
In this section, we will use SQL Server Management Studio to manage Microsoft Azure
SQL Database. SQL Server Management Studio (SSMS) is one of the most commonly
used tools for managing an SQL Server. Now you can use it to manage an SQL Database
as well. Note that you will need SQL Server 2012 Management Studio Express (SSMSE)

Figure 5.21 Connection Properties dialog.

140 ◾ Zen of Cloud

Figure 5.22 Adding all tables.

Figure 5.23 Add Controller dialog.

Data Storage: Relational Database ◾ 141

version, which can be downloaded for free from http://www.microsoft.com/en-us/download/
details.aspx?id=29062. You should download either the 32-bit version or the 64-bit version
based on your machine environment.

Example 5.2: SQL Database—the order view

Difficulty: **
In this example, we continue with Example 5.1 and use SSMSE to create a new OrderView, which
automatically calculates the amount of an order based on its details.

 1. Launch SSMS or SSMSE.
 2. Log in to the database in Example 5.1. The way to log in is similar to that for an SQL Server.

Note that you need to select SQL Server Authentication, as shown in Figure 5.28.
 3. Once signed in, you can browse various database resources, such as tables and views, in the

Object Explorer. At the time of writing this book, the tool does not provide graphic UI for
managing database schemas and objects. If you want to use a graphic UI, you can use SSDT,
which will be introduced in the next section. Here we will use a script to create a new view. In
the Object Explorer, right-click the Views node, and select the New View menu, as shown
in Figure 5.29.

 4. In the script editor, enter and execute the following script:

CREATE VIEW OrderView AS
SELECT [Order].ID,CustomerID, Description,
 (SELECT SUM(ItemPrice * ItemQuantity)
 FROM OrderDetail WHERE OrderID = [Order].ID) As Amount
FROM [Order]

Figure 5.24 orders view.

142 ◾ Zen of Cloud

Figure 5.25 new order page.

Figure 5.26 orders page.

Data Storage: Relational Database ◾ 143

 5. After the view has been created, you can try to query it. For example,

SELECT * FROM OrderView

As you can see, you can manage an SQL Database using SSMS just as if you were managing an SQL
Server instance. Most of your knowledge of T-SQL still applies. A detailed introduction of T-SQL
is beyond the scope of this book.

Figure 5.27 Completed online ordering system.

Figure 5.28 Use SSMSe to log in to SQL Database.

144 ◾ Zen of Cloud

5.3.2 Microsoft SQL Server Data Tools
Microsoft SQL Server Data Tools (SSDT) is a database management tool integrated with Visual
Studio. You can directly manage and query databases within Visual Studio using SSDT, which
you can download from Microsoft Azure Management Portal, as shown in Figure 5.30.

Once the tool has been downloaded and installed, you can access it from Visual Studio’s
VIEW→SQL Server Object Explorer menu. The tool is very similar to SQL Server
Management Studio and very intuitive, so I shall not go into further detail. Figure 5.31 is a
screenshot of SSDT.

Figure 5.29 Create a new view in SSMSe.

Figure 5.30 Download SSDt.

Data Storage: Relational Database ◾ 145

5.3.3 Dynamic Management Views
Dynamic Management Views (DMVs) provide dynamic information of database service statuses,
allowing you to monitor the health of the service, diagnose problems, and optimize system
performance. For example, through these views, you can examine various types of information
such as database sizes, number of connections, query speed, and index usages. Next, we will learn
how to use DMVs with an example.

Example 5.3: Use Dynamic Management Views

Difficulty: *

 1. Launch SSMS. Sign in to the SQL Database you want to work with.
 2. In Object Explorer, right-click on the database, and select the New Query menu.
 3. To query DMVs, the database user requires VIEW DATABASE STATE privilege. Let us set

it up first:

GRANT VIEW DATABASE STATE TO <user>;

 4. Then, let us query for the current database size (in MB) via dm_db_partition_stats view:

SELECT SUM(reserved_page_count)*8.0/1024 FROM sys.dm_db_partition_
stats;

 5. Now let us query for the connection information by joining multiple DMVs:

SELECT
 e.connection_id,
 s.session_id,
 s.login_name,
 s.last_request_end_time,
 s.cpu_time

Figure 5.31 SSDt Ui.

146 ◾ Zen of Cloud

FROM
 sys.dm_exec_sessions s
INNER JOIN
 sys.dm_exec_connections e
ON
 s.session_id = e.session_id;

Of course, we barely scratched the surface of DMVs here with only a quick run of a couple of views.
To get more information on these management views, you may visit http://msdn.microsoft.com/
en-us/library/windowsazure/ee336238.aspx.

Note: Samples in this section come from MSDN:
http://msdn.microsoft.com/en-us/library/windowsazure/ff394114.aspx

5.3.4 Query Optimization
Query optimization is a common problem we often face. Sometimes, a change of a single index
or a single query may have significant impact on system performance. SQL optimization requires
specialized knowledge and tools, which cannot be covered in full in this book. Instead, we would
like to emphasize on two points: the general process of query optimization, and optimization tools
provided by Microsoft Azure.

 ◾ The General Process of Query Optimization
 A systematical approach is the key to successful and effective query optimization. We have

seen too often that developers spend much time and effort in query optimization without
clearly knowing the effectiveness of the exercises, or knowing when to stop. Typically, at
the beginning phase of optimization, you can gain much improvement with less effort.
However, after the principal problem has been resolved, it becomes increasingly harder to
gain additional improvement. As the return rate decreases exponentially, it is important to
know when the performance is “good enough” so the optimization work can stop. In other
words, in terms of query optimization, you should always shoot for “good enough” instead
of “perfect,” because the price of “perfect” is often unacceptable.

 An effective query optimization process is illustrated in Figure 5.32.
 − Measure

 Quantitative measurements are very important to query optimization. Ambiguous
assessments such as “system is slow” or “query is too complex” are insufficient for estab-
lishing performance baselines, which provide objective benchmarks to evaluate the
effectiveness of the optimization work. Only based on accurate measurements can you
establish reliable baselines, to which you can compare improved performance and decide
if the performance is “good enough.”

 − Establish/Refine goals
 The goals of query optimization are driven by both technical factors and business

factors. Understanding customers’ expectation in performance is crucial for establishing
appropriate performance goals. A faster system is not automatically a better system.
Instead, system performance should be in tune with the rhythm of how business is

Data Storage: Relational Database ◾ 147

conducted by the customers. Blindly chasing after ultimate speed increases cost and risk,
without necessarily bringing the best returns.

 − Analyze data/Determine focusing points
 Measured data help developers to accurately locate system bottlenecks based on objective

evidence instead of hunches and guesses. Experiences tell us that system performance is
often decided by how an application layer is designed and implemented. Instead of just
focusing on query optimizations, developers should also carefully examine whether the
application is using the data layer effectively. For instance, is the application layer mak-
ing repetitive queries? Is it storing too much unnecessary data? Is it delegating business
logic to the data layer? All these are good questions to ask to identify bottlenecks in the
application layer.

Note: Different people have different opinions on whether business logic should be imple-
mented on databases. Many systems use stored procedures to implement business logic. This is
often not a good approach. Stored procedures can be used to facilitate complex data handling,
but they should not be the carriers of business logic. Implementing business logic in stored pro-
cedures blurs the boundary between the business layer and the database layer. This is a viola-
tion of separation of concerns principle. It binds business logic to a specific database platform.

 − Optimize
 This is the part where you apply various tools and techniques to optimize queries.
 − Compare

 After one round of optimization, you need to measure again and compare newly acquired
data with established goals. When the result is “good enough,” exit the loop.

 ◾ Query optimization tools provided by Microsoft Azure
 Common tools for optimizing an SQL Server include SQL Profiler, performance counters,

and SQL Server Management Studio. Although you can monitor many database-related
performance counters such as deadlocks, successful connections, and failed connections on
Microsoft Azure Management Portal, you can find richer tools on the SQL Database man-
agement UI. In the following example, we will learn how to analyze a query using an SQL
Database management UI.

Establish/refine
goals

Compare
Good enough?

Finish

Measure/establish
baseline

Analyze data/determine
focusing points

Optimize

Figure 5.32 Systematical approach of query optimization.

148 ◾ Zen of Cloud

Example 5.4: Use SQL Database Management UI

Difficulty: *

 1. Log in to SQL Database management UI (see Example 5.1).
 2. Click on the Administration link at the lower-left corner.
 3. Click on the Query Performance link to see the performances of recent queries

(see Figure 5.33).
 4. Click on any query to examine its performance details. In this example, we have inserted a

couple of order details for the order and have executed query: SELECT * FROM Orderview.
Click on the Query Plan link to see a graphical presentation of the query plan. You can
examine each execution step in detail and observe the percentage of resources the step uses.
Figure 5.34 shows how much CPU is used in each step of the chosen query.

 5. Click on any box to further examine the details of the step. There are many more features on
this page, which interested users may explore.

Figure 5.33 Query Performance page.

Figure 5.34 execution plan of a query.

Data Storage: Relational Database ◾ 149

5.4 Data Sync and Migration
An SQL Database provides a series of data migration and synchronization mechanisms. For exam-
ple, you can deploy a local SQL Server database to an SQL Database. You can also package and
download an SQL Database to a local SQL Server database. You can also use Data Sync Service
to back up a database, or to sync data among multiple databases.

5.4.1 Data-Tier Application
Data-tier Application (DAC) encapsulates all database objects an application uses, including
tables, indexes, views, stored procedures, and users. Instead of directly working on databases,
developers can work with this abstraction layer to design the database schema, and then hand
the definition to database administrators to deploy to any databases that support DAC. DAC not
only eliminates the complexity of maintaining database scripts, but also reduces interdependencies
between developers and database administrators. In addition, DAC also supports automatic data
migration when the database schema changes so you do not lose your data during schema updates.
Last but not least, DAC supports version controls, allowing developers and administrators to man-
age DAC versions just like managing source code versions.

When working with DAC, you often need to deal with two file types: .bacpac and .dacpac.

 ◾ .dacpac
 .dacpac contains the schema of a database. Its main purpose is for deploying the database

schema to different environments and for updating the database schema.
 ◾ .bacpac

 .bacpac contains both the schema and the data of a database. The schema, which is encoded
as JSON data, is the same as that in .dacpac. Logically a .bacpac is a backup of a database.
Its main purpose is database migration.

Example 5.5: Use .bacpac and .dacpac

Difficulty: ***

In this example, we download and import our SQL Database in Example 5.1 to a local SQL Server.

 1. Log in to Microsoft Azure Management Portal. Open the details view of the database in
Example 5.1 (if the page you see is not the one in Figure 5.35, click on the cloud icon with
the little flash).

 2. Click on the EXPORT icon on the command bar, as shown in Figure 5.35.
 3. On EXPORT DATABASE dialog, choose Create a new storage account in the BLOB

STORAGE ACCOUNT dropdown. Enter database server login credentials, and then click
the NEXT icon to continue, as shown in Figure 5.36.

 4. On the next page, create a new storage account. All you need to do is to enter a URL iden-
tifying the account, and a container name (only lowercased letters are allowed) to hold the
exported data. As we have not introduced Microsoft Azure Storage services yet, you can
simply think of a container as a space where you can save files. Uncheck the ENABLE GEO-
REPLICATION checkbox, and then click the check button, as shown in Figure 5.37.

 5. Launch Visual Studio as an administrator. Then, use the VIEW→Server Explorer menu to
open the Server Explorer.

 6. Expand the Microsoft Azure node to your storage account (as shown in Figure 5.38).
Double click on the container you have created in step 4 to view its contents. Then, right-
click the only file in the container and select the Save As menu to save the .bacpac file to a
local folder of your choice.

150 ◾ Zen of Cloud

 7. Launch SQL Server Management Studio. Connect to your local SQL Server, such as a local
SQL Express database.

 8. Right-click on the Databases node, and select the Import Data-tier Application menu, as
shown in Figure 5.39.

 9. On Import Data-tier Application dialog, click the Next button to continue.
 10. On the Import Settings page, select the Import from local disk option, and pick the file

you downloaded in step 6. Note that you can actually directly import from a Microsoft
Azure Storage account. The only reason we did the manual download step is to avoid manu-
ally inputting account information, which we will explain in the next chapter. After the file
is chosen, click the Next button to continue, as shown in Figure 5.40.

Figure 5.35 export database.

Figure 5.36 export database to a new storage account.

Data Storage: Relational Database ◾ 151

 11. On the Database Settings page, click the Next button to continue.
 12. Click the Finish button to start import (ironic, isn’t it?). After import is done, click the Close

button to close the wizard.
 13. Now you can try out a few queries, such as

SELECT * FROM OrderView

 to verify that both database schema and data have been successfully copied.
 14. You can also deploy your local SQL Server to the SQL Database. In SQL Server Management

Studio, right-click on the database, select the Tasks→Deploy Database to Microsoft
Azure menu (SQL Database was called SQL Azure), and then follow the wizard to finish
the deployment.

Figure 5.37 Create a new storage account.

Figure 5.38 Save the .bacpac file to a local folder.

152 ◾ Zen of Cloud

5.4.2 Data Sync
Following the previous example gives us two identical databases on the SQL Server and
SQL Database. Next, we will learn how to use the SQL Data Sync service to keep the two
databases in sync.

Figure 5.39 import Data-tier Application menu.

Figure 5.40 import a local .bacpac file.

Data Storage: Relational Database ◾ 153

Note: At the time of writing this book, SQL Data Sync is still in preview. The released
version of the service may differ.

Example 5.6: Data Sync between SQL Server and SQL Database

Difficulty: ****

 1. Before you send up the Data Sync agent, you need to make sure the target database server has
the following prerequisites installed:

 a. .Net Framework 4
 b. Microsoft SQL Server CLR Types for Microsoft SQL Server 2012 (×86)
 2. Log in to Microsoft Azure Management Portal. Select the database for which you want to set

up the sync. Then, click the ADD SYNC icon on the command bar, and select the Add Sync
Agent menu, as shown in Figure 5.41.

 3. On New Sync Agent dialog, enter a name for the sync agent. Choose a region for the agent
(to ensure performance, you should pick the same region as where your SQL Database
resides). You can also download and install the local agent from this page by clicking on the
install one here link, as shown in Figure 5.42 (the download link is https://go.microsoft.
com/fwLink/?LinkID=223590&clcid=0x409. Note that this is the preview version; you may
consult the companion site or use BING to find out the link to the final released version).

 4. After the agent has been created, click on the MANAGE KEY icon on the command bar.
Then, on Manage access key dialog, click the Generate button to generate a new access
key. Copy the access key to the clipboard by clicking on the copy button to the right of the
AGENT ACCESS KEY field, as shown in Figure 5.43.

 5. Launch Microsoft SQL Data Sync Agent Preview. Click on the Submit Agent Key button
at the top of the screen. Then, on the pop-up dialog, paste in the agent key and click the OK
button to continue.

 6. Back in the main window, click on the Register button to register the local SQL Server. In
the pop-up dialog, enter connection information to the local database, and then click on the
Save button, as shown in Figure 5.44.

 7. On Microsoft Azure Management Portal, click on the ADD SYNC icon on the command
bar again, and select the New Sync Group menu, as shown in Figure 5.45.

Figure 5.41 Add new Sync Agent.

154 ◾ Zen of Cloud

 8. On Sync group basic settings dialog, enter a name for the Sync Group, pick its region, and
click the next icon to continue, as shown in Figure 5.46.

 9. Define a sync hub. A Sync Group can include one hub database and multiple reference data-
bases. On this page, pick the SQL Database as the hub database and enter the corresponding
credentials. You can also choose the conflict resolution policy on this page. When conflicts
are detected, you can specify whether the hub database should win or the reference (client)
database should win. Here, we will use Hub Wins, as shown in Figure 5.47.

 10. On Add reference database dialog, expand the REFERENCE DATABASE dropdown
box. You will see that the sync agent we just registered shows up in the list. Pick the agent, as
shown in Figure 5.48.

 11. If the local database uses Windows authentication, you do not need to enter the user name
or password. Otherwise, you need to enter the correct credentials to your local database. You
can also pick the sync direction, which can be bidirectional, from hub or to hub. Click on
the check button to continue, as shown in Figure 5.49.

 12. On Microsoft Azure Management Portal, click on the Sync Group to open its details
page. Then, switch to the SYNC RULES page. On the SYNC RULES page, click the

Figure 5.42 new Sync Agent dialog.

Figure 5.43 Manage access key.

Data Storage: Relational Database ◾ 155

DEFINE SYNC RULES link. We will pick the data that we want to sync on the DEFINE
DATASET dialog. First, select the SQL Database (see Figure 5.50).

 13. Click the SELECT icon on the command bar, and then click the Select all the columns in
all the tables menu.

 14. Click the SAVE icon.
 15. Go to the CONFIGURE page. Set AUTOMATIC SYNC to ON, and SYNC

FREQUENCY to 5 min. Click the SAVE button to save the configuration, as shown in
Figure 5.51.

 16. Now our SQL Server and SQL Database are synced every 5 min. To test it out, insert a new
record in the local database, for example,

Figure 5.44 Register local database to a Sync Group.

Figure 5.45 Create a new Sync Group.

156 ◾ Zen of Cloud

INSERT Customer(Name, [Address]) VALUES('Sync Customer', '123 Sync
Street');

 17. After several minutes, query the SQL Database to check whether the Customer table on the
SQL Database has been updated as well. In addition, you can also check the sync log, to
trigger on-demand syncs, on Microsoft Azure Management Portal.

Figure 5.46 Sync Group basic settings.

Figure 5.47 Define sync hub data.

Data Storage: Relational Database ◾ 157

5.5 Periodically Backup Your SQL Databases
On Microsoft Azure Management Portal, you can set up auto-export rules to periodically
export your SQL Database as backups. The exported .bacpac files can be saved on your storage
account for a certain number of days. You can restore data from these files when needed, as
shown in Figure 5.52.

Figure 5.48 Add a reference database.

Figure 5.49 Finish adding the reference database.

158 ◾ Zen of Cloud

Figure 5.50 Select database.

Figure 5.51 Sync Group configuration.

Data Storage: Relational Database ◾ 159

5.6 Use MySQL Database
5.6.1 Microsoft Azure Store
As an open platform, Microsoft Azure provides a Microsoft Azure Store, where service providers
and data providers can sell their SaaS services and data. Note that the available services and data
may vary in different regions. The process to purchase a new service is very simple:

 1. Log in to Microsoft Azure Management Portal.
 2. On the command bar, click the NEW icon, and then select STORE.
 3. On PURCHASE FROM STORE dialog, you can pick the services or data you want

to purchase, and follow the wizard to complete the purchase process. Many service pro-
viders provide free trials for you to try out the services before making final purchase
decisions. For example, Figure 5.53 shows the ClearDB MySQL service under the APP
SERVICES category.

 4. After a service has been purchased, you can manage it on Microsoft Azure Management
Portal under the ADD-ONS group. For example, you can click on each service to check its
details. You can also use the MANAGE icon to open its management UI. Furthermore, you
can use the CONNECTION INFO icon to check how to connect to the service. You can
also use the UPGRADE icon to upgrade your service (see Figure 5.54).

Figure 5.52 Automatic export.

160 ◾ Zen of Cloud

5.6.2 Purchasing MySQL Service
You can purchase the ClearDB MySQL database following the method in Section 5.6.1.
ClearDB MySQL provides several subscription plans, including a free 20 MB, four-connections
plan. After you have purchased the service, you can use the CONNECTION INFO button on
the command bar to view its connection information, as shown in Figure 5.55.

Figure 5.53 Use Microsoft Azure Store.

Figure 5.54 Managing add-ons on Microsoft Azure Management Portal.

Data Storage: Relational Database ◾ 161

5.6.3 Other Means to Run MySQL
If the purchased MySQL service does not satisfy the specific requirements of your project, you can
build a MySQL environment yourself. Of course, in this case, you are giving up the benefits of
SaaS in favor of deep customization. There are several possible options:

 ◾ Build MySQL servers on Microsoft Azure Virtual Machines.
 ◾ Package MySQL in a cloud service Worker Role, and launch MySQL via startup tasks or

custom entry points. Note that because virtual machines running the Worker Roles are
stateless, you will need to use data disks external to the cloud service.

 ◾ Use a Virtual Network to connect to local MySQL servers.

The detailed steps of the previous configuration exceed the scope of this book. We will introduce
Virtual Machines and Virtual Networks in later chapters.

5.7 Summary
In this chapter, we first gave a brief overview of various storage solutions that Microsoft Azure
provides. Then we studied the SQL Database. Because of the high compatibility between an SQL
Database and an SQL Server, many existing tools, techniques, and codes can be directly applied
to the SQL Database. We learned how to use Entity Framework, ASP.NET MVC 4, SQL Server
Management Studio, Microsoft SQL Server Data Tools, T-SQL scripts, Dynamic Management

Figure 5.55 Connection information of MySQL.

162 ◾ Zen of Cloud

Views, and SQL Database management UI to manage and optimize an SQL Database.
We discussed a recommended process of query optimization. Then, we learned how .bacpac and
.dacpac can be used to provide database abstractions, backups, and data migrations. We also
learned how to use Data Sync Service to sync data among multiple data sources. Finally, we
provided a brief introduction of Microsoft Azure Store and introduced several options of running
a MySQL service.

163

Chapter 6

Data Storage
Storage Services

In addition to relational databases, Microsoft Azure provides several options for saving unstructured
data, such as Table storage, BLOB storage, and virtual disks. Before we go into detail of these ser-
vices, let us first study how to use local storage space on virtual machines running your service roles.

6.1 Local Storage
When defining a cloud service role, you can allocate a local storage space for the role to use.
A Local Storage is a special folder on the virtual machine that the role instance can use to save
temporary data. Because the virtual machines hosting role instances are stateless, you are not
supposed to persist with permanent data on a Local Storage. Although you can specify that data
in the Local Storage should be preserved when the role instance is recycled, it is not guaranteed
that the data will be permanently saved. For example, during role instance maintenance, Microsoft
Azure may migrate your role instances to other virtual machines when there are errors on the host-
ing machines. Obviously, you will not be able to access the data on the original hosting machines
in this case. If you want reliable data storages, you will need to use the database services we intro-
duced in the previous chapter or use the data storage services that we will cover later in this chapter.

You can define one or more storage spaces in the cloud service definition file (.csdef). The
minimum size of a Local Storage is 1 MB, and the maximum size of a Local Storage depends on
the size of the virtual machine (see the Temporary Storage column in Table 1.1). Now, let us learn
how to use a Local Storage via an example.

Example 6.1: Local Storage—Random Data Generator Service

Difficulty: **
In this example, we create a simple data file generation service that generates random data files based
on parameters users specify via a Web UI. In this example, we use ASP.NET MVC Web API. If you
are not familiar with ASP.NET MVC, you should get some basic knowledge by consulting related
documents before returning to this example.

164 ◾ Zen of Cloud

 1. Launch Visual Studio as an administrator. Create a new cloud service with an ASP.NET
MVC Web Role (using the Internet Application template).

 2. In Solution Explorer, double click the Web Role in the cloud service to open its Properties
page.

 3. On the left of the screen, click the Local Storage tab.
 4. Click the Add Local Storage link.
 5. In the newly added row, enter MyFiles as Name, and 10240 as Size. Then, click Ctrl + S to

save the definition file (Figure 6.1).

Note: If you check the Clean on role recycle checkbox, the data in the Local Storage will be
cleared when the instance is recycled.

 6. In the Web Role project, right-click the Controller folder, and select the
Add→Controller menu.

 7. On the Add Controller dialog, set Controller name as FileController, and select the Empty
API controller template. Then, click the Add button to add the controller, as shown in
Figure 6.2.

 8. Implement a GET method on the FileController. The method takes a minimum value (the
min parameter), a maximum value (the max parameter), the number of records (the count
parameter), and a file name (the file parameter), and generates a CSV file containing random
numbers of a given number of records within a specified range. Note that this method does
not regenerate files with the same name. Line 10 in Code List 6.1 shows how to access the
folder of the Local Storage.

 9. Modify the Home\Index.cshtml file under the Views folder. The modified code is as shown
in Code List 6.2.

 10. Press F5 to launch the application. Click the Generate Data File button to download the
data file, as shown in Figure 6.3.

6.2 overview of Microsoft Azure Storage Services
Microsoft Azure Storage services is a series of data storage SaaS provided by Microsoft Azure. You
can use either client libraries or their REST-styled APIs to call these services from any platform
(such as Windows, Linux, and Mac) using most programming languages (such as C#, Python, and
Java) to save and retrieve unstructured data, such as texts, pictures, and videos. We will introduce
each of these services in the following sections.

Figure 6.1 Define Local Storage on a role.

Data Storage: Storage Services ◾ 165

6.2.1 Microsoft Azure Storage Account
To use Microsoft Azure Storage services, you need to get a storage account. You can create up to
five storage accounts under a Microsoft Azure subscription. Each account can be used to save up
to 100 TB of data. Before we create an account, let us go over some related concepts:

 ◾ Region, Subregion, and Datacenter
 Microsoft Azure operates datacenters around the globe. These datacenters are divided into

several Regions, such as Asia, Europe, and the United States. Each Region is further divided
into Subregions. For example, the US region contains four subregions: West, East, North
Central, and South Central. Inbound data to Microsoft Azure is free, and data transmitted
with the same datacenter is free as well. However, data flowing out from datacenters are bill-
able. You should try to keep your deployed resources together in the same datacenter to avoid
unnecessary charges for their communications.

Tip: The first 5 GB of egress data of the billing month is free.

 ◾ Geo Redundant Storage—GRS
 Geo Redundant Storage uses a geo-replication mechanism to replicate user data to another

datacenter that is hundreds of miles away from the original datacenter. With GRS, even if a
disaster wipes out the whole datacenter, a user’s data are still safe in the backup datacenter.
GRS is the default option when you provision a new storage account, but you can turn it
off to save storage and transmission costs. Geo-redundancy occurs within the same region.
For example, user data saved in Europe Region will never be replicated to any datacenters
outside the region.

Figure 6.2 Add a new Web APi controller.

166 ◾ Zen of Cloud

 ◾ Locally Redundant Storage—LRS
 Local Redundancy refers to the fact that all data are saved as three copies within the

Subregion to ensure data availability. This is the default behavior and cannot be turned off.
 ◾ Affinity Groups

 Microsoft Azure datacenters host both Microsoft Azure SaaS services (such as storage
services) and cloud services deployed by service developers. When Microsoft Azure deploys

CODE LIST 6.1 GENERATE RANDOM FILES

 1: using Microsoft.WindowsAzure.ServiceRuntime;
 2: using System.IO;
 3: using System.Net.Http.Headers;
 …
 4: public class FileController : ApiController
 5: {
 6: pr ivate static Random mRandom = new Random(); //Random

number generator
 7: pu blic HttpResponseMessage Get(int min, int max, long count,

string file)
 8: {
 9: //get the root folder of a Local Storage
10: va r root = RoleEnvironment.GetLocalResource("MyFiles").

RootPath;
11: var fileName = Path.Combine(root, file);
12: if (!File.Exists(fileName))
13: {
14: using (StreamWriter writer =
15: ne w StreamWriter(File.

Create(fileName, 1024000)))
16: {
17: for (var i = 0; i < count; i++)
18: {
19: writer.Write(mRandom.Next(min, max));
20: writer.Write(",");
21: }
22: }
23: }
24: //Return the generated data file
25: Ht tpResponseMessage result = new HttpResponseMessage(Http

StatusCode.OK);
26: re sult.Content = new StreamContent(File.Open(fileName,

FileMode.Open));
27: result.Content.Headers.ContentDisposition =
28: new ContentDispositionHeaderValue("attachment");
29: result.Content.Headers.ContentDisposition.FileName = file;
30: result.Content.Headers.ContentType =
31: new MediaTypeHeaderValue("text/plain");
32: return result;
33: }
34: }

Data Storage: Storage Services ◾ 167

your services, it will put your services as close as possible to the SaaS services within the same
Affinity Group, in order to minimize the network delays between them.

 ◾ Storage Account Endpoints
 Every storage account has three HTTP-based endpoints:

 − BLOB service: http://[storage account].blob.core.windows.net
 − Table service: http://[storage account].table.core.windows.net
 − Queue service: http://[storage account].queue.core.windows.net

 Appending the object identifier to these URL generates the URL to an object within the
storage service. For example, a BLOB object with the name blob1 saved in a container with
the name containter1 has the following URL:

 http://[storage account].blob.core.windows.net/container1/blob1

6.2.2 Provisioning a Windows Storage Account
Provisioning a storage account is very simple. In fact, when you deploy a cloud service, if you
have not created any storage accounts, the deployment wizard will automatically provision
one for you to hold uploaded service packages. To create a new storage account on Microsoft
Azure Management Portal, click the NEW icon on the command bar, and select DATA
SERVICES→STORAGE→QUICK CREATE. Enter a name for the account in the URL field,

CODE LIST 6.2 WEB UI TO CONTROL RANDOM DATA GENERATION

@{
 ViewBag.Title = "Home Page";
}
<la bel>Min Value: </label><input type="text" id="minValue" value="0"

/>

<label>Max Value: </label>
<input type="text" id="maxValue" value="@int.MaxValue" />

<la bel># of Records: </label><input type="text" id="numOfRec"

value="1000" />
<la bel>File Name: </label><input type="text" id="fileName"

value="myfile.txt" />

<input type="button" id="generate" value="Generate Data File" />
@section Scripts{
 <script>
 $('#generate').click(function () {
 window.location.href = '/api/File?min='
 + encodeURIComponent(minValue.value)
 + '&max=' + encodeURIComponent(maxValue.value)
 + '&count=' + encodeURIComponent(numOfRec.value)
 + '&file=' + encodeURIComponent(fileName.value);
 });
 </script>
}

168 ◾ Zen of Cloud

and pick a location for the account. Optionally, you can turn off GRS by unchecking the Enable
Geo-Replication checkbox. Finally, click the CREATE STORAGE ACCOUNT link to create
the account, as shown in Figure 6.4.

6.2.3 Storage Account Access Keys
Before your service can access data stored on a storage account, the service needs to authenticate
to the storage service by providing the correct combination of a storage account name and its

Figure 6.3 Generate random data file.

Figure 6.4 Create a new storage account.

Data Storage: Storage Services ◾ 169

access key. You can query access keys on the storage account list view or the account details view
on Microsoft Azure Management Portal. On either view, click the MANAGE KEYS icon on the
command bar to check or regenerate access keys, as shown in Figure 6.5.

On this dialog, you can check access keys, copy access keys to the clipboard, or regenerate new
keys. You may have noticed that there are two access keys, one primary key and one secondary
key. What is the purpose of having two keys? This is because when one of the keys is leaked or
needs to be updated, you can update your service configuration file to use the other key to keep the
service running. Of course, the exact policy of how these two keys are used and updated is up to
you. However, when you update access keys, you have to watch out for possible impacts on other
services that rely on storage services:

 ◾ Virtual machines
 The disk images of a virtual machine are saved on a storage account. If you regenerate

access keys while these virtual machines are running, you will have to redeploy these virtual
machines. To avoid redeployments, you should shut down the virtual machines that use the
storage account before you update the account’s access keys.

 ◾ Media service
 Media service uses storage services to save media files. After you update the access key, you

need to sync the key to media service.
 ◾ Cloud services

 Cloud services that use the affected storage accounts need to be updated to use the new
keys to reestablish connections. Commonly, connection information to a storage account is
presented as a connection string in the service’s configuration file:

DefaultEndpointsProtocol=https;AccountName=[account
name];AccountKey=[access key]

Figure 6.5 Manage access keys of a storage account.

170 ◾ Zen of Cloud

6.3 Using BLoB Storage
BLOB Storage can be used to save large amounts of unstructured data. The size of a single BLOB
can be as big as hundreds of GB, and each storage account can hold up to 100 TB of data. Every
BLOB has a corresponding URL, which can be accessed by either HTTP or HTTPS.

6.3.1 BLOB Storage Overview
The data structure of the BLOB Storage service is depicted in Figure 6.6.

 ◾ Account
 All access to BLOBs is done using a storage account. Each account contains multiple

containers.
 ◾ Container

 Containers are used to group BLOBs. Each container holds any number of BLOBs.
 ◾ BLOB

 BLOB is a file of any size and type. When saved, a BLOB has to be put in a Container. The
URL to a BLOB has the following format:

http://[storage account].blob.core.windows.net/[container name]/
[BLOB name]

 There are two types of BLOBs: blocks and pages. Most BLOBs belong to the block type.
A block BLOB can be as big as 200 GB. Another type of BLOB is page BLOB. A page BLOB
can be as big as 1 TB. We will explain the difference between the two in Section 6.3.2.

 Before we learn how to programmatically access the BLOB service, let us learn the basics
of managing the BLOB service in Visual Studio.

Example 6.2: Use Visual Studio to manage BLOB Service

Difficulty: *

 1. Launch Visual Studio. Select the VIEW→Server Explorer menu to open Server Explorer.

Account Container Blob

Account1

Pictures

Movies

Picture1.png

Picture2.png

Movie1.mp4

Figure 6.6 BLoB Storage structure.

Data Storage: Storage Services ◾ 171

 2. In Server Explorer, expand the storage account node, right click the Blobs node, and select
the Create Blob Container menu, as shown in Figure 6.7.

 3. On Create Blob Container dialog, enter pictures as the container name, and click the OK
button to create the container (Figure 6.8).

 4. In Server Explorer, double click on the new pictures node to browse its contents.
 5. Click the upload icon (see Figure 6.9), and pick a file to be uploaded to the container, as

shown in Figure 6.9.
 6. Once the file is uploaded, you can double click the file in Visual Studio to download it, as

shown in Figure 6.10.
 7. By default, a newly created container is private, which is inaccessible by the public. You can

right-click the container in Server Explorer, select the Properties menu, and then change
its Public Read Access property to Blob to grant anonymous access to the container and
its BLOBs.

Figure 6.7 Create a Blob Container.

Figure 6.8 Create Blob Container dialog.

172 ◾ Zen of Cloud

 8. After the change takes effect, you can copy the URL to the BLOB in Visual Studio (right-
click the row in Figure 6.10 and select Copy URL), and paste it to a browser to download
the file.

Now, let us learn how to use the BLOB service programmatically.

Example 6.3: BLOB Service—online album

Difficulty: ****
In this example, we will create an online album website, which allows users to create albums and
upload pictures.

Note: In this example, we will build a relatively complete ASP.NET MVC 4 application.
So in addition to accessing the BLOB service, the application also contains other aspects.
ASP.NET MVC is still relatively new. Although it is based on the ASP.NET framework, its
design philosophy and methodology are quite different from ASP.NET. Although I cannot
cover ASP.NET MVC in great detail in this book, I hope to cover some of the basic concepts
with this example.

 1. Launch Visual Studio as an administrator. Create a new cloud service with an ASP.NET
MVC 4 Web Role (using Internet Application template).

Figure 6.9 Upload a BLoB in Visual Studio.

Figure 6.10 Download a BLoB in Visual Studio.

Data Storage: Storage Services ◾ 173

 2. In the Web Role project, right-click the Models folder, and select the Add→Class menu.
Add an AlbumModels.cs file, where we will define three classes: Album, Picture, and the
mapping between them (AlbumPicture). These three classes represent the three business
models (the “M” in MVC) we want to use in our application. Note that in Code List 6.3,
we have decorated several properties with the DisplayName attribute, which assists the
ASP.NET MVC view scaffolding tool to generate labels for these fields while creating
display pages.

 3. Rebuild the solution.
 4. Add an Album folder under the Views folder. Under this folder, we will create four views:

album list view (Index.cshtml), album details view (Details.cshtml), page for creating a new
album (Create.cshtml), and page for uploading a picture (AddPicture.cshtml).

 5. First, let us work on the album list view (Index.cshtml). This page is bound to a list of the
album model, as declared in the first line of Code List 6.4. On the top of the page, there
is a link to create a new album, under which there is a list of existing albums. Each album
corresponds to a container in the BLOB service. The completed code of the view is shown in
Code List 6.4.

 6. The album details view (Details.cshtml) is not complex either, as shown in Code List 6.5.
 7. The source code of a page for creating a new album (Create.cshtml) is shown in Code List 6.6.
 8. Finally, there is the page for uploading a new picture (AddPicture.cshtml). The complete

source code is shown in Code List 6.7.
 9. Add a new Repositories folder, and create an AlbumRepository class under the folder. This

class encapsulates all BLOB accesses we are going to perform in this application. But we will
start with some dummy functions, as shown in Code List 6.8.

CODE LIST 6.3 BUSINESS MODELS

public class Album
{
 [DisplayName("Name")]
 public string Name { get; set; }
 [DisplayName("Album URL")]
 public string AlbumURL { get; set; }
}
public class AlbumPictures
{
 public string Album { get; set; }
 public List<Picture> Pictures { get; set; }
 public AlbumPictures()
 {
 Pictures = new List<Picture>();
 }
}
public class Picture
{
 public string Album { get; set; }
 [DisplayName("Name")]
 public string Name { get; set; }
 [DisplayName("Picture URL")]
 public string URL { get; set; }
}

174 ◾ Zen of Cloud

 10. Add a new controller under the Controllers folder. Note that to save a couple of steps, we
actually combined an MVC controller and an API controller. As an exercise, you should
split the controller into two, with clearly separate responsibilities. The MVC controller is
responsible for serving up views only. The API controller provides an access interface to the
underlying business logic, which is encapsulated in a repository in this case. The source code
of the completed controller is shown in Code List 6.9.

 11. Now let us add server CSS style to make the UI a little prettier. Modify the Site.Css file
under the Content folder to add the styles in Code List 6.10.

 12. Modify the RouteConfig.cs file under the App_Start folder to change the default controller
from Home to Album:

… defaults: new {controller = "Album" …

CODE LIST 6.4 ALBUM LIST VIEW

@model IEnumerable<MvcWebRole1.Models.Album>
@{
 ViewBag.Title = "My Albums";
}
<h2>My Albums</h2>
<p>
 @Html.ActionLink("New Album", "Create")
</p>
@foreach (var item in Model)
{
 <div class="album-div">
 <table>
 <tr>
 <td class="album-title">
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 </tr>
 <tr>
 <td>

 </td>
 </tr>
 <tr>
 <td class="album-action">
 @Html.ActionLink("Open", "Details",
 new { Album = item.Name }) |
 @Html.ActionLink("Delete", "Delete",
 new { Album = item.Name })
 </td>
 </tr>
 </table>
 </div>
}

Data Storage: Storage Services ◾ 175

 13. Now you can delete the Index.cshtml file from the Views\Home folder—we do not need it
anymore.

 14. Rebuild the solution. Now our application is almost ready except for the AblumRepository
class, which we will focus on next.

 15. First, let us add a StorageConnectionString setting to the Web Role, and point it to your stor-
age account, as shown in Figure 6.11.

 16. When you created the project, Microsoft Azure ADK already added to your project a
reference to Microsoft.WindowsAzure.Storage, which contains the client library you need
to access for the BLOB storage. First, let us import several namespaces and declare two
temporary variables: mAccount representing a storage account, and mClient representing a
BLOB service client.

CODE LIST 6.5 ALBUM DETAILS VIEW

@model MvcWebRole1.Models.AlbumPictures
@{
 ViewBag.Title = "Album Contents";
}
<h2>Album Contents</h2>
<p>
 @Ht ml.ActionLink("Add a Picture", "AddPicture", new { Album =

Model.Album })
</p>
@foreach (var item in Model.Pictures)
{
 <div class="album-div">
 <table class="album-text">
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 </tr>
 <tr>
 <td>

 </td>
 </tr>
 <tr>
 <td>
 @Html.ActionLink("Delete", "DeletePicture",
 ne w { Album = item.Album, Name = item.

Name })
 </td>
 </tr>
 </table>
 </div>
}
<div>
 @Html.ActionLink("Return to Album List", "Index")
</div>

176 ◾ Zen of Cloud

using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Storage.Blob;
...
CloudStorageAccount mAccount;
CloudBlobClient mClient;

 17. Initialize mAccount and mClient in the AlbumRepository’s constructor.

public AlbumRepository()
{
 mAccount = CloudStorageAccount.
 Pa rse(CloudConfigurationManager.GetSetting("StorageConnection

String"));
 mClient = mAccount.CreateCloudBlobClient();
}

CODE LIST 6.6 PAGE FOR CREATING A NEW ALBUM

@model MvcWebRole1.Models.Album
@{
 ViewBag.Title = "Create a New Album";
}
<h2>Create a New Album</h2>
@using (Html.BeginForm())
{
 @Html.AntiForgeryToken()
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>Album</legend>
 <div class="editor-label">
 @Html.LabelFor(model => model.Name)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Name)
 @Html.ValidationMessageFor(model => model.Name)
 </div>
 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
}
<div>
 @Html.ActionLink("Return to Album List", "Index")
</div>
@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
}

Data Storage: Storage Services ◾ 177

 18. Because this application directly uses containers as albums, the method to list albums is simply
to list all containers under the storage account, as shown in line 4 of Code List 6.11.

 19. To list all pictures in an album, we enumerate all BLOB files in the container. This is a two-
step operation: first to get a reference to a container (line 4 in Code List 6.12) and then to
enumerate the BLOBs (line 5).

Note: ListBlobs takes two parameters. The first parameter is a prefix and the second
parameter is a flag indicating whether the returned entities should contain hierarchies.

CODE LIST 6.7 PAGE FOR UPLOADING A NEW PICTURE

@model MvcWebRole1.Models.Picture
@{
 ViewBag.Title = "Add a New Picture";
}
<h2>Add a New Picture</h2>
@using (Html.BeginForm("AddPicture", "Album", FormMethod.Post,
 new { enctype = "multipart/form-data" }))
{
 @Html.AntiForgeryToken()
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>Picture</legend>
 <div class="editor-label">
 @Html.LabelFor(model => model.Name)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Name)
 @Html.ValidationMessageFor(model => model.Name)
 </div>
 <div class="editor-label">
 @Html.LabelFor(model => model.URL)
 </div>
 <div class="editor-field">
 <input type="file" name="picture" id="picture" />
 </div>
 @Html.HiddenFor(model => model.Album)
 <p>
 <input type="submit" value="Add" />
 </p>
 </fieldset>
}
<div>
 @H tml.ActionLink("Return to Album", "Details", new { Album =

Model.Album })
</div>
@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
}

178 ◾ Zen of Cloud

 20. To create a new album is to create a new container. By default, the containers you create (see
line 4 in Code List 6.13) are private, which are inaccessible by the public. In lines 5–8, we
change the access type of the newly created container to BlobContainerPublicAccessType.
Blob, which allows anonymous access to BLOBs as well as their metadata, but does not
allow access to the container’s metadata, or to enumerate BLOBs. The other two access
types are Container, which grants access to BLOBs and metadata and to enumerate
BLOBs) and Off, which turns off anonymous access. We will make use of metadata later
in this example.

Internally, the BLOBs in a container are organized in a flat structure, but you can use
BLOB names to simulate folder hierarchies. For example, two BLOBs with the names
folder1/blob1 and folder1/blob2 can be considered as two BLOBs under the same (virtual)
folder1 folder. When we set the second parameter to true, we will get a simple CloudBlob
list back. If we set the parameter to false, on the other hand, we will get a mixed list of
CloudBlob and CloudBlobDirectory. Then we can use the CloudBlobDirectory instance to get
the BLOBs it contains.

CODE LIST 6.8 DUMMY STORAGE FUNCTIONS

public class AlbumRepository
{
 public List<Album> ListAlbums()
 {
 throw new NotImplementedException();
 }
 public AlbumPictures ListPictures(string name)
 {
 throw new NotImplementedException();
 }
 public void CreateAlbum(string name)
 {
 throw new NotImplementedException();
 }
 public void DeleteAlbum(string name)
 {
 throw new NotImplementedException();
 }
 public void DeletePicture(string album, string name)
 {
 throw new NotImplementedException();
 }
 public void AddPicture(string album, string name, Stream file)
 {
 throw new NotImplementedException();
 }
}

Data Storage: Storage Services ◾ 179

CODE LIST 6.9 ALBUM CONTROLLER

public class AlbumController : Controller
{
 AlbumRepository repository = new AlbumRepository();
 public ActionResult Index()
 {
 return View(repository.ListAlbums());
 }
 public ActionResult Details(string album)
 {
 return View(repository.ListPictures(album));
 }
 public ActionResult Create()
 {
 return View();
 }
 public ActionResult AddPicture(string Album)
 {
 return View(new Picture { Album = Album });
 }
 [HttpPost]
 public ActionResult AddPicture(FormCollection collection)
 {
 re pository.AddPicture(collection["Album"],

collection["Name"],
 Request.Files[0].InputStream);
 return RedirectToAction("Details",
 new { Album = collection["Album"] });
 }
 [HttpPost]
 public ActionResult Create(FormCollection collection)
 {
 repository.CreateAlbum(collection["Name"]);
 return RedirectToAction("Index");
 }
 public ActionResult Delete(string album)
 {
 repository.DeleteAlbum(album);
 return RedirectToAction("Index");
 }
 public ActionResult DeletePicture(string album, string name)
 {
 repository.DeletePicture(album, name);
 return RedirectToAction("Details", new { Album = album });
 }
}

180 ◾ Zen of Cloud

CODE LIST 6.10 SITE STYLE

.album-picture {
 width:250px;
 height:250px;
 padding:5px;
 margin:3px;
 background-color:darkgray;
 }
 .album-div {
 display:inline-block;
}
.album-title {
 font-family: Arial, Helvetica, sans-serif;
 font-weight:bold;
 font-size: 32px;
}
.album-action {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 16px;
}

Figure 6.11 Adding connection string to the Web Role.

Data Storage: Storage Services ◾ 181

CODE LIST 6.11 LISTALBUMS METHOD

 1:public List<Album> ListAlbums()
 2:{
 3: List<Album> result = new List<Album>();
 4: var containers = mClient.ListContainers();
 5: foreach (var container in containers)
 6: {
 7: var album = new Album { Name = container.Name };
 8: result.Add(album);
 9: }
10: return result;
11:}

CODE LIST 6.12 LISTPICTURES METHOD

 1:public AlbumPictures ListPictures(string name)
 2:{
 3: AlbumPictures result = new AlbumPictures() { Album = name };
 4: var container = mClient.GetContainerReference(name);
 5: foreach (var blob in container.ListBlobs(null, true))
 6: {
 7: CloudBlockBlob blockBlob = (CloudBlockBlob)blob;
 8: result.Pictures.Add(new Picture
 9: {
10: Album = name,
11: Name = blockBlob.Name,
12: URL = blockBlob.Uri.ToString()
13: });
14: }
15: return result;
16:}

CODE LIST 6.13 CREATEALBUM METHOD

1:public void CreateAlbum(string name)
2:{
3: var container = mClient.GetContainerReference(name);
4: container.CreateIfNotExists();
5: container.SetPermissions(new BlobContainerPermissions
6: {
7: PublicAccess = BlobContainerPublicAccessType.Blob
8: });
9:}

182 ◾ Zen of Cloud

 21. The process of adding a picture to an album is the same as uploading a BLOB to a container.
Here we are dealing with the simplest case. In the next section of this chapter, we will discuss
how to handle different BLOB types and large files.

public void AddPicture(string album, string name, Stream file)
{
 var container = mClient.GetContainerReference(album);
 CloudBlockBlob blob = container.GetBlockBlobReference(name);
 blob.UploadFromStream(file);
}

Note: We do not use the BLOB downloading method in this example, because we simply
point the sources of tags directly to BLOB URLs. If you want to programmatically
download a BLOB, you can use the DowloadToStream method on a BLOB.

 22. Deleting an album (container) or a picture (BLOB) is fairly straightforward, as shown in
Code List 6.14. The only thing to point out is the DeleteSnapshotsOption.IncludeSnapshots
flag in line 10. BLOB storage service allows you to create multiple snapshots of a BLOB to
preserve multiple versions of it. This flag allows us to delete all associated snapshots while
deleting a BLOB.

 23. Before we launch the application, let us improve the ListAlbum method to display the first
image in the container as its cover picture:

public List<Album> ListAlbums()
{
 List<Album> result = new List<Album>();
 var containers = mClient.ListContainers();
 foreach (var container in containers)
 {
 var album = new Album { Name = container.Name };
 var blobs = container.ListBlobs(null, false);
 if (blobs != null && blobs.Count() > 0)
 album.AlbumURL = blobs.First().Uri.ToString();
 result.Add(album);
 }
 return result;
}

 24. If everything is entered correctly, you can press F5 to test out the application (see Figure 6.12).
Note that because the names of BLOBs and containers have to be made up by lowercased
letters, numbers, and dashes only (and between 3 and 36 letters), you have to pick names
following this convention. Of course, this is not very convenient, which we will fix in the
next few steps.

 25. Both BLOBs and containers have associated Properties and Metadata. Properties are read-
only, but you are free to define custom metadata. We will save descriptive information of
albums and pictures in the metadata of corresponding entities.

Data Storage: Storage Services ◾ 183

 26. Add a Description field to the Album model:

[DisplayName("Description")]
 public string Description {get; set;}

CODE LIST 6.14 DELETEALBUM METHOD
AND DELETEPICTURE METHOD

public void DeleteAlbum(string name)
{
 var container = mClient.GetContainerReference(name);
 container.DeleteIfExists();
}
public void DeletePicture(string album, string name)
{
 var container = mClient.GetContainerReference(album);
 var blob = container.GetBlockBlobReference(name);
 blob.DeleteIfExists(DeleteSnapshotsOption.IncludeSnapshots);
}

Figure 6.12 Running BLoB Album application.

184 ◾ Zen of Cloud

 27. Modify the Index.cshtml file under the Views\Album folder. We will display an album’s
Description, which is not constrained by BLOB naming rules, instead of its Name.

…
<tr>
 <td class="album-title">
 @Html.DisplayFor(modelItem => item.Description)
 </td>
</tr>

 28. Modify the Create.cshtml page under the Views\Album folder to add the new field:

<div class="editor-label">
 @Html.LabelFor(model => model.Description)
</div>
<div class="editor-field">
 @Html.EditorFor(model => model.Description)
 @Html.ValidationMessageFor(model => model.Description)
</div>

 29. Correspondingly, we need to modify AlbumController.cs:

[HttpPost]
public ActionResult Create(FormCollection collection)
{
 re pository.CreateAlbum(collection["Name"],

collection["Description"]);
 return RedirectToAction("Index");
}

 30. We also need to modify the CreateAlbum method of the AlbumRepository class. Lines 5–7
in Code List 6.15 save the album’s description to its metadata. Note that once you finish
updating the metadata, you need to invoke SetMetadata to commit the changes.

 31. Finally, modify the ListAlbum method to read album descriptions from metadata (see lines
7–14 in Code List 6.16).

 32. The modified album creation page is shown in Figure 6.13.
 33. The modified album list view is shown in Figure 6.14.

6.3.2 Block BLOB and Page BLOB
BLOB storage service supports two BLOB types: block BLOB and page BLOB.

 ◾ Block BLOB
 When uploading a BLOB, you can upload a file up to 64M in size (the client library by

default allows an upload size of up to 32 MB, but you can change this setting by modify-
ing the SingleBlobUploadThresholdInBytes attribute). Larger files are split into blocks, each
smaller than 4 MB. A BLOB can be split into as many as 50,000 such blocks. After all
blocks have been uploaded, you need to upload a block list so that the storage service can

Data Storage: Storage Services ◾ 185

assemble these blocks back into a complete BLOB. You can concurrently upload multiple
blocks, and they do not need to be uploaded in order. All uploaded blocks will be in an
uncommitted state till you commit the operation. To upload a BLOB in blocks programmati-
cally, you can use the PutBlock method on the CloudBlockBlob class to submit blocks, and
use the PutBlockList method to submit the block list.

CODE LIST 6.15 MODIFIED CREATEALBUM METHOD

 1:public void CreateAlbum(string name, string description)
 2:{
 3: var container = mClient.GetContainerReference(name);
 4: container.CreateIfNotExists();
 5: container.Metadata["description"] =
 6: Co nvert.ToBase64String(Encoding.UTF8.

GetBytes(description));
 7: container.SetMetadata();
 8: container.SetPermissions(new BlobContainerPermissions
 9: {
10: PublicAccess = BlobContainerPublicAccessType.Container
11: });
12:}

CODE LIST 6.16 MODIFIED LISTALBUMS METHOD

 1:public List<Album> ListAlbums()
 2:{
 3: List<Album> result = new List<Album>();
 4: var containers = mClient.ListContainers();
 5: foreach (var container in containers)
 6: {
 7: container.FetchAttributes();
 8: var album = new Album
 9: {
10: Name = container.Name,
11: Description =
12: (container.Metadata.ContainsKey("description") ?
13: Encoding.UTF8.GetString
14: (Convert.FromBase64String(
15: container.Metadata["description"]))
16: : container.Name)
17: };
18: var blobs = container.ListBlobs(null, false);
19: if (blobs != null && blobs.Count() > 0)
20: album.AlbumURL = blobs.First().Uri.ToString();
21: result.Add(album);
22: }
23: return result;
24:}

186 ◾ Zen of Cloud

Figure 6.13 Modified album creation page.

Figure 6.14 Modified album list view.

Data Storage: Storage Services ◾ 187

 ◾ Page BLOB
 A Page BLOB is made up of 512B pages for random read/write access. When you create a

page blob, you need to specify the maximum size the BLOB can use. All read/write opera-
tions are performed within the 512B boundaries. Different from a block BLOB, all your
updates are immediately committed without additional commit operations. The maximum
size of a page BLOB is 1 TB.

6.3.3 ETag and Snapshots
Entity Tag (ETag) is a common mechanism for optimistic concurrency control. Every commit-
ted BLOB has an associated ETag, which can be used to represent the version of the BLOB. For
example, when you write back a BLOB, you can compare the BLOB’s current ETag and the ETag
your BLOB has to detect if the BLOB has been modified before you commit your changes. Using
ETag for concurrency does not require holding a lock on the BLOB for a long time. It is a popular
way for concurrency control on cloud because it is simple and it provides higher data availability
compared to other methods. Code List 6.17 provides a simple list of how to read an ETag.

You can create multiple snapshots for a BLOB. The snapshots are read-only. You can create,
delete, and read snapshots, but you cannot update them. A snapshot is a CloudBlob instance itself.
Once you have create a snapshot for a BLOB, you can use the snapshot’s Snapshot property, which
is a DateTime-typed value, to uniquely identify this snapshot. You can use snapshots to save
multiple versions of a BLOB. You can also use a snapshot to restore a BLOB to an older version.
Code List 6.18 is a simple example of creating a snapshot.

6.3.4 REST API
Microsoft Azure storage services, as well as most of SaaS services provided by Microsoft Azure,
provide REST API for the clients to use. For example, you can send an HTTP/1.1 GET request to
the address https://[storage account name].blob.core.windows.net/?comp=list to enumerate BLOB
containers under a storage account. Unsurprisingly, your requests have to contain the required
headers. For detailed header requirements, you may consult the MSDN document at the address:

CODE LIST 6.17 READING ETAG

CloudBlockBlob blockBlob;
…
blockBlob.FetchAttributes();
var etag = blockBlob.Properties.ETag;

CODE LIST 6.18 CREATING A SNAPSHOT

CloudBlob blob;
…
CloudBlob snapshot = blob.CreateSnapshot();
DateTime timestamp = (DateTime)snapshot.Attributes.Snapshot;

188 ◾ Zen of Cloud

http://msdn.microsoft.com/en-us/library/windowsazure/dd135733.aspx. Figure 6.15 shows a
sample query submitted via Fiddler.

This query returns an XML file, which contains all the containers under the storage account,
as shown in Figure 6.16.

Note: You will not be able to resubmit the previous query, because the Authorization header
is calculated with the submission time factored in. You may visit
http://msdn.microsoft.com/en-us/library/windowsazure/dd135733.aspx
for a complete list of REST API.

6.3.5 Shared Access Signature and Stored Access Policies
When you share your BLOB data with other people, you need to give them access to your
resources. Instead of granting anonymous access to the resources, you can create Shared Access
Signatures (SAS) to allow users to access the specific resources within a limited period of
time. The format of SAS is a URL, which allows users to access the corresponding BLOB
resource with specified constraints. For example, if you want to allow a customer to view and
sign a document within a given time, you can create an SAS for the document and share the
URL with the customer. The customer can use the URL to open the document only within
the specified time period; otherwise, the access will be denied. Because using an SAS URL
does not require extra authentication, you need to ensure that the URL is shared only with
designated users.

Obviously, it is a tedious job to maintain a large number of SASs. Instead, you can use Stored
Access Policy to manage SASs in bulk. For example, you can change the access window, or deny
access to a group of SASs, using a Stored Access Policy.

Code List 6.19 is a simple example of generating an SAS. Lines 4–8 define an immediately
effective access policy (by omitting the ShareAccessStartTime parameter) that expires in 5 h.

Figure 6.15 Submit a ReSt APi query via Fiddler.

Figure 6.16 Sample query result.

Data Storage: Storage Services ◾ 189

The policy allows SAS holders to perform Read and List operations on the container within the
time limit. Lines 11 and 12 indicate how to generate the SAS. Then, you can share the result
sasToken string with your customers.

Note: About UTC Time
All servers and services on Microsoft Azure use UTC time. Moreover, many services
check if the timestamp on the request is close enough to the server time when handling
a request. When you submit a request, ensure that you are using UTC time. Line 6 in
Code List 6.19 shows how to use UTC time. Because there will be a time drift between the
client machine and the server, the code does not specify a start time to ensure the policy is
effective immediately.

Once the SAS is received, the customer can use it to create a new StorageCredentails
instance (line 1 in Code List 6.20) to gain access to the resource. As shown in Code List
6.20, because the SAS grants List operation, the customer can enumerate the BLOBs in the
container (line 4).

CODE LIST 6.19 GENERATING AN SAS

 1 CloudBlobContainer conta1iner;
 2 …
 3 Bl obContainerPermissions permissions = new

BlobContainerPermissions();
 4 pe rmissions.SharedAccessPolicies.Add("testpolicy", new

SharedAccessBlobPolicy
 5 {
 6 SharedAccessExpiryTime = DateTime.UtcNow.AddHours(5),
 7 Permissions = SharedAccessBlobPermissions.Read
 8 | SharedAccessBlobPermissions.List});
 9 permissions.PublicAccess = BlobContainerPublicAccessType.Off;
10 container.SetPermissions(permissions);
11 var sasToken = container.GetSharedAccessSignature
12 (permissions.SharedAccessPolicies["testpolicy"]);

CODE LIST 6.20 USE AN SAS

1 StorageCredentials credentails = new StorageCredentials(sasToken);
2 CloudBlobContainer clientContainer = new CloudBlobContainer(new
3 Ur i("https://[storage account name].blob.core.windows.net/"

+ name), credentails);
4 var blobs = clientContainer.ListBlobs();
5 int count = blobs.Count();

190 ◾ Zen of Cloud

6.3.6 BLOB Update, Copy, and Lease
In addition to adding and deleting BLOBs, you can update or copy existing BLOBs (within the
same storage account or across different storage accounts). Before you operate on a BLOB, you
can create a lease, which provides the holder exclusive write and delete access to the BLOB. The
lease can be between 15 s and 1 min, or be permanent. Before the lease expires, the lease holder
can renew the lease to extend the exclusive access window if needed. Lease state changes are more
complex than what we just described. Interested readers may consult http://msdn.microsoft.com/
en-us/library/windowsazure/ee691972.aspx for more details.

Code List 6.21 is a simple example of using a lease. Line 1 creates a 10-s lease. The operation
returns a lease id, which identifies the lease. If a BLOB has a lease on it, you have to provide the
correct lease id before you can operate on the BLOB (as shown in line 3).

6.3.7 Error Handling
In order to simplify the code, we skipped all error handling in the previous code. Most user errors
can be avoided by proper input validations—for instance, to check if the album name follows the
naming convention of a BLOB container. However, you may also notice that some operations
may fail without apparent reasons, but succeed if retried later. This phenomenon is most likely
caused by transient errors. Transient errors are caused by some temporary conditions, and they
will go away once the triggering conditions disappear. We will introduce transient error handling
in Chapter 10.

6.4 Using table Storage
Table storage service is ideal for saving large amounts of unstructured, unrelated data. For exam-
ple, you can use table storage to save millions of contact cards, billions of geo coordinates, etc.

6.4.1 Table Storage Overview
The data structure of the table storage service is depicted in Figure 6.17.

 ◾ Account
 All access to tables are done using a storage account.

 ◾ Table
 A table is a collection of entities. Different from a relational database, table storage does not

have a fixed schema. In other words, you can save entities with different fields in the same table.
 ◾ Entity

 Entity is a collection of properties, similar to a record in a relational database. The maximum
size of an entity is 1 MB.

CODE LIST 6.21 USE BLOB LEASE

1 var leaseID = blob.AcquireLease(TimeSpan.FromSeconds(10), null);
2 blob.Delete(DeleteSnapshotsOption.IncludeSnapshots,
3 new AccessCondition { LeaseId = leaseID });

Data Storage: Storage Services ◾ 191

 ◾ Property
 A property is a key-value pair. Each entity can have up to 252 properties. Each entity has

three system-reserved properties: Partition Key, Row Key, and Timestamp. Entities residing
in the same partition can be inserted or queried with an atomic operation. A Row Key has
to be unique within a partition.

6.4.2 Optimizing Data Partition
Similar to many other NoSQL databases, Microsoft Azure Table storage also saves data as key-value
pairs. However, the data keys in Microsoft Azure Table storage consist of two parts: Partition Key
and Row Key. The Partition Key and the Row Key are strings with length of less than 1K, or an
empty string (but cannot be null). Data keys are sorted alphabetically, first by Partition Keys and
then by Row Keys, forming a clustered index. Figure 6.18 shows four entities belonging to two parti-
tions (partitions 11 and 12). In partition 11, because the Row Keys are sorted alphabetically, key 111
appears before key 20. Microsoft Azure may put partitions on different partition servers to balance
overall system loads. Each partition server can hold multiple partitions and can return about 500
entities per second (actual throughputs may vary). How the data are partitioned may have significant
impacts on system performance. Here we will cover several points that are worth noting:

 ◾ Use smaller partitions
 All entities within a partition are saved on the same partition server. When a partition is

hit heavily, it may overload the hosting partition server. In this case, Microsoft Azure will
relocate some of the partitions on this server to some other servers to balance system loads.
So, generally speaking, you should use smaller partitions to reduce the probability of hitting
the same partition heavily. At the same time, smaller partitions are easier to migrate to other
partition servers so your partition can “escape” from a busy server quickly.

 ◾ Use batch operations
 Within the same partition, you can group operations on up to 100 entities into a batch,

which is processed as a single ACID (Atomicity, Consistency, Isolation, and Durability)
transaction. Batched operations not only give you better performance, but also save your
money because a batch is billed as one transaction.

 ◾ Range partitions
 If each of the entities in your table has a unique partition id (in other words, if each

portion contains only one entity), and these partition keys are sorted in an ascending

Account Table Entity

Account1

Equipment

Tool

ID =
Price = ...

Description = ...
Weight = ...

Name = ...
Make = ...

Figure 6.17 table storage service.

192 ◾ Zen of Cloud

or descending order, the table storage service may automatically group these partitions
to range partitions to improve query speed. If your insert operations are always to be
appended or prepended to this ordered list, all insert operations will always be handled by
the tail or the head partition server. On the other hand, if the partition keys of your insert
operations are randomly distributed, the workload is better balanced across multiple
partition servers.

 Of course, there is no fixed formula for choosing the best partition strategy. Different
data, different query modes, and different update patterns all have impacts on how
partitions should been chosen. In your projects, you should choose partitions based on your
specific scenarios and test your choices by performance tests in order to determine the best
partition strategy.

Note: Table storage does not support custom indexes.

 Using table storage service is very similar to using BLOB storage service. Now let us learn
how to manage tables in Visual Studio Server Explorer.

Example 6.4: Use Visual Studio to manage table service

Difficulty: *

 1. Launch Visual Studio. Select the VIEW→Server Explorer menu to open Server Explorer.
 2. In Server Explorer, expand the storage account node, right click the Tables node, and select

the Create Table menu.
 3. On Create Table dialog, enter a table name and click the OK button to create the table.

11

11

12

12

111

20

01

02

Partition key Row key

Figure 6.18 table storage index structure.

Data Storage: Storage Services ◾ 193

 4. Double click on the newly created table to open its details view, in which you can create,
modify, and delete entities. Click on the Add Entity icon (see Figure 6.19) to add an entity;
double click on an entity to edit it; and click on the delete button to delete selected entities.
The UI also supports queries written in WCF Data Services query syntax (similar to T-SQL).
If you are not familiar with the syntax, you can use Query Builder to build a query.

In the next example, we will learn how to programmatically operate tables.

Example 6.5: Table storage example—the animal game

Difficulty: ***
In this example, we build an online game—the animal game, which is a variant of the classic
Twenty Questions game. In this game, the player thinks of an animal, and the server attempts
to guess the animal by asking the player less than 20 yes–no questions. The program has built-
in learning capability. If it fails to guess an animal, it will ask the player to provide a question
that can be used to identify the animal. Although the program initially only knows about three
animals—dove, lion, and goldfish—in theory it can identify as many as 220 (1,048,576) kinds
of animals when it is fully educated. Hence, it would know more animals than most of us do
at the end.

The essence of this program is to build and query a binary tree. The initial knowledge tree is
shown in Figure 6.20. Evidently, this is a very small tree, so the server will fail to guess the animal
at the beginning. For example, when the server knows the animal can fly, it will immediately guess
it is a dove. If the player tells the server it has made a wrong guess, it will ask the player to enter the
name of the animal, and a question that can distinguish the animal from a dove.

Assume that the player thinks of a seagull. Then the player can enter the question “Is it a sea
bird?” for the server to learn how to tell apart doves and seagulls. After one round of learning, the
updated knowledge tree is depicted in Figure 6.21.

How do we preserve this tree? In theory, when the tree is fully populated, we will have over
two million nodes (internal nodes for questions and leaf nodes for animals)—this should not be a
problem for table storage service. The question, then, is how to partition the data. Obviously, we do
not want to put all entities in a single partition. Instead, we will use single-instance partitions and
use partition keys made up by 1s and 0s, with 1s indicating left branches and 0s indicating right
branches. Table 6.1 shows how the knowledge tree in Figure 6.21 is saved in table storage.

Figure 6.19 Manage table entities.

194 ◾ Zen of Cloud

Now let us start to implement the application. Here we will start with an empty ASP.NET MVC
4 Web Role to build a Single Page Application (SPA).

 1. Launch Visual Studio as an administrator. Create a new Microsoft Azure cloud service with
an ASP.NET MVC 4 Web Role (using an empty template).

Does it fly?

Dove Does it swim?

Goldfish Lion

Yes

Yes

No

No

Figure 6.20 initial knowledge tree.

Does it fly?

Yes

Is it a seabird?

No

NoNo YesYes

Seagull Dove Goldfish Lion

Does it swim?

Figure 6.21 Updated knowledge tree.

table 6.1 entities for the Knowledge tree

Partition Row Text Is Answer?

1 — Does it fly? 0

11 — Is it a sea bird? 0

111 — Seagull 1

110 — Dove 1

10 — Does it swim? 0

101 — Goldfish 1

100 — Lion 1

Data Storage: Storage Services ◾ 195

 2. Because the empty template does not include jQuery, let us first add a reference to jQuery by
using NuGet packages. Right-click the Web Role and select the Manage NuGet Packages
menu. On Manage NuGet Packages dialog, click on the Install button to the right of
jQuery to install jQuery. If you do not see jQuery in the list, you can use the search box at
the upper-right corner of the dialog to search for it.

Note: About NuGet
NuGet is a new way to manage assembly references. In addition to adding references to
assemblies, NuGet can also add other resources, such as JavaScript files, into the project.
Some NuGet packages also transform an application’s configuration file even source code
to bootstrap the development process. NuGet has gained great popularity in the past years.
Many ISVs as well as individual contributors have published over 117,000 packages. All
Microsoft Azure client libraries are published as NuGet packages as well. So, you should
familiarize yourself with how to use NuGet packages. Removing NuGet packages is also
very simple. All you need to do is to open the Manage NuGet Packages dialog again and
click on the Uninstall buttons beside the packages you want to remove. In addition, you
can update your referenced packages to new versions at any time. Finally, for those who like
command lines, you can also use command-line commands to manage NuGet packages
(Figure 6.22).

 3. Add a new QuestionEntity class under the Models folder. Table storage service requires
entities to inherit TableEntity class. All the entities you want to save in a table need to inherit
this class, which defines a partition key (PartitionKey), a row key (RowKey), a timestamp
(Timestamp), and an ETag. Our subclass defines the additional Text property and the
IsAnswer property.

Figure 6.22 Manage nuGet packages.

196 ◾ Zen of Cloud

using Microsoft.WindowsAzure.Storage.Table;
…
public class QuestionEntity: TableEntity
{
 pu blic QuestionEntity(string questionId, string text, bool

isAnswer)
 {
 this.PartitionKey = questionId;
 this.RowKey = "";
 this.Text = text;
 this.IsAnswer = isAnswer;
 }
 public QuestionEntity() { }
 public string Text { get; set; }
 public bool IsAnswer { get; set; }
}

 4. Add a new empty API Controller named QuestionController under the Controllers folder.
The controller has the knowledge tree in Figure 6.20 predefined as a starting point. Its three
GET methods return the root node (line 12 in Code List 6.22), return a child node (line
16), and update the current node (line 24), respectively. When updating a node, the question
entered by the user replaces the node. The original node becomes the right child of the ques-
tion node. The answer to the question is added as the left child of the question node. A node’s
identifier is made by appending either a “1” or a “0” to its parent’s identifier. For example, the
two children of node “101” are “1011” (representing a true answer) and “1010” (representing
a false answer).

 5. Add a new Empty MVC Controller named HomeController to the Controllers folder. The
sole responsibility of this controller is to return the main view:

public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }
}

 6. Create a Home folder under the Views folder. Then, add an Index.cshtml view under the
Home folder. Because this is an SPA, the UI contains all required display elements as well as
AJAX calls to the API controller. The complete code is shown in Code List 6.23.

 7. Now you can press F5 to test the application. Because currently the QuestionController saves
its knowledge tree in memory, the application forgets everything when it is restarted. Next,
we will store the knowledge tree in table storage.

 8. You need a storage account to use table storage. Use the same method as in step 15 of
Example 6.3 to add a StorageConnectionString to your Web Role. Then, import the following
namespaces to the QuestionController class:

using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Table;
using Microsoft.WindowsAzure;

Data Storage: Storage Services ◾ 197

CODE LIST 6.22 QUESTIONCONTROLLER API CONTROLLER

 1: public class QuestionController : ApiController
 2: {
 3: private static Dictionary<string, QuestionEntity> mQuestions =
 4: new Dictionary<string,QuestionEntity>
 5: {
 6: {" 1", new QuestionEntity("1", "Does it fly?",

false)},
 7: {"11", new QuestionEntity("11", "Dove", true)},
 8: {" 10", new QuestionEntity("10", "Does it

swim?", false)},
 9: {" 101", new QuestionEntity("101", "Goldfish",

true)},
10: {" 100", new QuestionEntity("100", "Lion",

true)}
11: };
12: public QuestionEntity Get()
13: {
14: return mQuestions["1"];
15: }
16: public QuestionEntity Get(string id, bool positive)
17: {
18: string index = id + (positive ? "1" : "0");
19: if (mQuestions.ContainsKey(index))
20: return mQuestions[index];
21: else
22: return null;
23: }
24: pu blic QuestionEntity Get(string id, string newquestion,

string animal)
25: {
26: var negativeId = id + "0";
27: var positiveId = id + "1";
28: mQuestions.Add(negativeId,
29: ne w QuestionEntity(negativeId, mQuestions[id].

Text, true));
30: mQuestions[id].Text = newquestion;
31: mQuestions[id].IsAnswer = false;
32: mQuestions.Add(positiveId,
33: new QuestionEntity(positiveId, animal, true));
34: return mQuestions[id];
35: }
36: }

198 ◾ Zen of Cloud

CODE LIST 6.23 INDEX VIEW

<style>
 div {
 margin: 20px;
 padding: 10px;
 background-color: lightgray;
 display: block;
 }
 h2 {
 margin: 20px;
 }

 h3 {
 margin: 20px;
 }

 input {
 margin: 5px;
 }
</style>
<h2>The Animal Game</h2>
<!-- UI for asking questions -->
<div id="guessPanel">
 <h3 id="question"></h3>
 <input type="radio" name="choices" value="yes" />Yes
 <input type="radio" name="choices" value="no" />No
 <input type="button" id="submit" value="Confirm" />
</div>
<!-- UI for making a guess -->
<div id="confirmPanel" style="display: none;">
 <h3> I guess the animal on your mind is: </

span>. Am I right?</h3>
 <input type="button" id="yesButton" value="Yes" />
 <input type="button" id="noButton" value="No" />
</div>
<!-- UI for learning -->
<div id="learnPanel" style="display: none;">
 <h3>You won! Please teach me how to improve.</h3>
 The animal you think about is:

 <input type="text" id="animal" />

 Please enter a question to separate the animal from <span
id="guessText">.

 <input type="text" id="newQuestion" />

 <input type="button" id="teach" value="Submit" />
 <in put type="button" id="restart2" class="restart"

value="Restart" />
</div>

Data Storage: Storage Services ◾ 199

<!-- UI for thank you message -->
<div id="thankyouPanel" style="display: none;">
 <h3>Thank you!</h3>
 <in put type="button" id="restart1" class="restart"

value="Restart" />
</div>
<script src="~/Scripts/jquery-2.0.3.min.js"></script>
<script>
 var currentQuestion;
 var lastPanel = $('#guessPanel'); //currently displayed panel
 $(function () {
 $.getJSON('/api/Question', function (json) {
 setcurrentQuestion(json);
 });
 });
 function flipDiv(div2) {
 lastPanel.slideUp();
 lastPanel = $('#' + div2);
 lastPanel.slideDown();
 }
 $('#submit').click(function () {
 var positive = false;
 if ($('input[name=choices]:checked').val() == 'yes')
 positive = true;
 $.getJSON('/api/Question?id=' + currentQuestion.PartitionKey
 + '&positive=' + positive,
 function (json) {
 if (json == null) //didn't find knowledge

node
 flipDiv('learnPanel');
 el se if (json.IsAnswer) { //found an answer,

make a guess
 flipDiv('confirmPanel');
 setcurrentQuestion(json);
 }
 el se { //didn't find a answer, ask a

quesstion
 flipDiv('guessPanel');
 setcurrentQuestion(json);
 }
 });
 });
 $(' #yesButton').click(function () { //user confirms the answer,

game ends.
 flipDiv('thankyouPanel');
 });

200 ◾ Zen of Cloud

 9. Similar to Example 6.3, add several private variables and a constructor to the
QuestionController class.

CloudStorageAccount mAccount;
CloudTableClient mClient;
const string tableName = "animals";
public QuestionController()
{
 mAccount = CloudStorageAccount.Parse(
 Cl oudConfigurationManager.GetSetting("StorageConnection

String"));
 mClient = mAccount.CreateCloudTableClient();
}

 $(' #noButton').click(function () { //user denies the answer,
start learning.

 flipDiv('learnPanel');
 });
 $(' #teach').click(function () { //record the question and the

answer user has provided.
 $.getJSON('/api/Question?id=' + currentQuestion.PartitionKey
 + '&newquestion='
 + encodeURIComponent($('#newQuestion').val())
 + '&animal='
 + en codeURIComponent($('#animal').val()),

function (json) {
 flipDiv('guessPanel');
 setcurrentQuestion(json);
 });
 });
 $('.restart').click(function () { //reset game
 $.getJSON('/api/Question', function (json) {
 flipDiv('guessPanel');
 setcurrentQuestion(json);
 });
 });
 fu nction setcurrentQuestion(data) { //update UI with current

question
 currentQuestion = data;
 $('#question').text(currentQuestion.Text);
 $('#guess').text(currentQuestion.Text);
 $('#guessText').text(currentQuestion.Text);
 }
</script>

Data Storage: Storage Services ◾ 201

 10. Next, let us change the original Dictionary to a List. We save these data for table
initialization:

private List<QuestionEntity> mQuestions = new List<QuestionEntity>
{
 new QuestionEntity("1", "Does it fly?", false),
 new QuestionEntity("11", "Dove", true),
 new QuestionEntity("10", "Does it swim?", false),
 new QuestionEntity("101", "Goldfish", true),
 new QuestionEntity("100", "Lion", true)
};

 11. Add a new getTableReference private method to the QuestionController class. This method
gets a reference to a table and initializes the table with the initial knowledge tree. Line 3
in Code List 6.24 checks if a table exists. Line 6 creates a table if the table does not exist.
Lines 10–12 show the process of inserting a new entity—first by creating an Insert operation
(TableOperation) and then executing it. This is also the general process of executing any
operation (insert, update, and delete) on a table.

 12. Add a new getEntityById private method to the QuestionController class. The method reads an
entity with a specified partition key. The method takes only one parameter because we only
use partition keys in this example (Code List 6.25).

 13. Finally, we can modify the three GET methods. To update an entity, you need to retrieve it
first (line 14 of Code List 6.26), update it (lines 19 and 20), and then use a Replace operation
to update it in the table (lines 21 and 22).

CODE LIST 6.24 GETTABLEREFERENCE METHOD

 1 private CloudTable getTableReference()
 2 {
 3 var table = mClient.GetTableReference(tableName);
 4 if (!table.Exists())
 5 {
 6 if (table.CreateIfNotExists())
 7 {
 8 foreach (var question in mQuestions)
 9 {
10 TableOperation insertOperation =
11 TableOperation.Insert(question);
12 table.Execute(insertOperation);
13 }
14 }
15 }
16 return table;
17 }

202 ◾ Zen of Cloud

CODE LIST 6.26 GET METHODS BASED ON TABLE STORAGE

 1 public QuestionEntity Get()
 2 {
 3 return getEntityById("1");
 4 }
 5 public QuestionEntity Get(string id, bool positive)
 6 {
 7 string index = id + (positive ? "1" : "0");
 8 return getEntityById(index);
 9 }
10 pu blic QuestionEntity Get(string id, string newquestion, string

animal)
11 {
12 var negativeId = id + "0";
13 var positiveId = id + "1";
14 var entity = getEntityById(id);
15 var table = getTableReference();
16 TableOperation insertOperation = TableOperation.Insert(
17 new QuestionEntity(negativeId, entity.Text, true));
18 table.Execute(insertOperation);
19 entity.Text = newquestion;
20 entity.IsAnswer = false;
21 Ta bleOperation updateOperation = TableOperation.

Replace(entity);
22 table.Execute(updateOperation);
23 insertOperation = TableOperation.Insert(
24 new QuestionEntity(positiveId, animal, true));
25 table.Execute(insertOperation);
26 return entity;
27 }

CODE LIST 6.25 GETENTITYBYID METHOD

private QuestionEntity getEntityById(string id)
{
 TableOperation retrieve =
 TableOperation.Retrieve<QuestionEntity>(id, "");
 TableResult retrieveResult =
 getTableReference().Execute(retrieve);
 if (retrieveResult.Result != null)
 return (QuestionEntity)retrieveResult.Result;
 else
 return null;
}

Data Storage: Storage Services ◾ 203

 14. Figure 6.23 shows several screens of the game.
 15. Figure 6.24 shows the entities in the animal table after several rounds of the game.

In the previous example, we used the Insert operation and the Replace operation. Other operations
include Merge, InsertOrMerge, InsertOrReplace, and Delete. In addition, at the table level, you can
use the DeleteIfExist method on the CloudTable class to delete a table.

Figure 6.23 Application screens.

Figure 6.24 entities in table storage.

204 ◾ Zen of Cloud

6.4.3 Query Table Data
In the previous example, we queried for a specific entity. You can use TableQuery to perform more
complex queries. Here are some typical examples:

 ◾ Query all entities in a partition

TableQuery<QuestionEntity> query =
 new TableQuery<QuestionEntity>()
 .Where(TableQuery.GenerateFilterCondition(
 "PartitionKey", QueryComparisons.Equal, "1"));
foreach (var entity in table.ExecuteQuery(query))
{
 var rowKey = entity.RowKey;
 var text = entity.Text;
 …
}

 ◾ Query some entities in a partition
 Code List 6.27 is an example to query some entities in a partition. This code queries all enti-

ties with Row Keys less than “11” in partition “1.” Of course, if you run this query against
the table in Example 6.3, you can get only one record (because each entity has its own
partition). Generally speaking, the query returns a list of entities (line 9). With a series of
filters (lines 4 and 7) and Boolean operators (line 6), you can build very complex queries.

6.4.4 Other Operations
 ◾ InsertOrReplace—Insert the entity if it does not exist, or replace the existing entity.
 ◾ InsertOrMerge—Insert the entity if it does not exist, or merge the entity into the

existing version.
 ◾ Merge—Merge entities. The result of a Merge operation is a union of two entities. The

merged entity has all the properties of both entities. If the two entities have the same
property, the value from the newer entity is used. You need to specify an ETag during the

CODE LIST 6.27 QUERY SOME ENTITIES IN A PARTITION

TableQuery<QuestionEntity> query =
 new TableQuery<QuestionEntity>()
 .Where(TableQuery.CombineFilters(
 TableQuery.GenerateFilterCondition("PartitionKey",
 QueryComparisons.Equal, "1"),
 TableOperators.And,
 TableQuery.GenerateFilterCondition("RowKey",
 QueryComparisons.LessThan, "11")));
foreach (var entity in table.ExecuteQuery(query))
{
 …
}

Data Storage: Storage Services ◾ 205

Merge operation. As we introduced earlier, ETag is used for optimistic concurrency control.
When you merge an entity, the ETag you provide to the Merge operation has to match with
the entity’s ETag. To force an unconditional merge, you can set ETag to “*” as shown in the
following code:

TableOperation op = TableOperation.Merge
 (new QuestionEntity("1", "Does it fly?", false) {ETag = "*"});
table.Execute(op);

6.4.5 Batch Operations
In this example, we did not use batched operations, because each of our entities has its own
partition, while batch operations only apply to entities within a same partition. Batch opera-
tions can group up to 100 table operations into a single transaction. Table storage service
ensures that all operations in a batch either succeed together or fail together to protect data
integrity. In addition, because all operations are handled as a single transaction, they can
be executed faster, and they are charged as a single operation. At the time of writing this
book, Microsoft Azure charges $0.01 per 100,000 operations. Batch operations have the
following limitations:

 ◾ You can batch update, delete, insert, merge, and replace operations.
 ◾ You cannot batch a query operation with insert, update, or delete operations.
 ◾ A batch can contain up to 100 operations. An entity can only appear once in a transaction.
 ◾ All operations have to be in the same partition.
 ◾ The maximum workload of a batch is 4 MB.

Code List 6.28 is an example of a simple batch.

6.4.6 Dynamic Table Entities
We have already shown that a table can hold entities with different properties. In some cases,
instead of retrieving whole entities, we may only want to retrieve a couple of properties on those
entities. Table storage service provides a DynamicTableEntity class for this purpose. In addition to a
PartitionKey, a RowKey, and a Timestamp, the class defines an IDictionary, which can be populated
with the only properties you need. In Code List 6.29, the code queries the animal table in
Example 6.5, but it only retrieves and returns the text property on entities.

CODE LIST 6.28 A SIMPLE BATCH

TableBatchOperation batch = new TableBatchOperation();
batch.Insert(new SomeEntity("111", "Frog"));
batch.Insert(new SomeEntity("222", "Fox"));
table.ExecuteBatch(batch);

206 ◾ Zen of Cloud

6.4.7 Shared Access Signatures
Similar to BLOB storage service, table storage service also supports Shared Access Signatures
(SAS). In addition to creating SASs at the table level, you can create SASs based on certain parti-
tions, or certain rows in a partition. In other words, you can actually grant different access rights
to different entities in the same table. For example, for a table holding information from different
customers, you can create a SAS for each of the customer partitions so that each customer can only
access his or her own data.

6.5 Use Queue Storage
Queue storage service provides queues for sending a large number of messages with sizes smaller
than 64 KB. Queue is an important tool to implement asynchronous patterns. Instead of directly
communicating with each other, a job creator and a job process pass jobs via a queue. This design
decouples the two parties so that they can operate independently—they can have different
throughputs, they do not need to be online at the same time, and they do not need to know about
each other. This kind of decoupling makes the system easily maintainable and extensible.

6.5.1 Queue Storage Overview
The data structure of Queue storage service is relatively simple, as shown in Figure 6.25.

 ◾ Account
 All accesses to Queues are done using a storage account.

 ◾ Queue
 A Queue stores a series of Messages. A Message has to be saved in a queue.

 ◾ Message
 A Message can be in any format, up to 64 KB in size.

Example 6.6: Use Visual Studio to manage Queue Service

Difficulty: *

 1. Launch Visual Studio. Select the VIEW→Server Explorer menu to open Server Explorer.
 2. In Server Explorer, expand the storage account node, right-click the Queues node, and select

the Create Queue menu.

CODE LIST 6.29 DYNAMIC TABLE ENTITIES

var table = getTableReference();
TableQuery query = new TableQuery().Select(new string[] {"Text"});
foreach (var entity in table.ExecuteQuery(query))
{
 EntityProperty text;
 if (!entity.Properties.TryGetValue("Text", out text))
 throw new ArgumentException("Property not found!");
}

Data Storage: Storage Services ◾ 207

 3. On Create Queue dialog, enter a queue name and click the OK button to create the queue.
 4. Double click the queue node to open its details view, where you can enqueue messages,

dequeue messages, or clear the queue, as shown in Figure 6.26.

6.5.2 Programmatically Operate Queues
Because using Queue storage service is similar to using two other storage services, we
will not provide a complete example here, but only list out some code snippets for typical
queue operations.

Figure 6.26 Manage Queues in Visual Studio.

Account

Account1

Queue

Queue2

Queue1

Figure 6.25 Queue storage.

208 ◾ Zen of Cloud

 ◾ Create a Queue

using Microsoft.WindowsAzure.Storage.Queue;
…
CloudQueueClient client = mAccount.CreateCloudQueueClient();
CloudQueue queue = client.GetQueueReference("jobqueue");
queue.CreateIfNotExists();

 ◾ Add a message

CloudQueueMessage message = new CloudQueueMessage("test message");
queue.AddMessage(message);

 ◾ Peek a message

CloudQueueMessage message = queue.PeekMessage();
var str = message.AsString;

 ◾ Retrieve a message
 You can use the GetMessage method to retrieve a message from a queue. The GetMessage

method does not directly remove the message from the queue, but places a lock on the mes-
sage so that the message becomes invisible to other callers. The lock holder has to explicitly
call the DeleteMessage method to remove the message, or renew the lock within 30 s, or the
message will be unlocked so it can be retrieved by other callers.

CloudQueueMessage message = queue.GetMessage();
var str = message.AsString;
queue.DeleteMessage(message);

 ◾ Update a message
 After a message is retrieved, you can use the lock window to update the message. You can

update the message content (line 2) as well as specify when updates are available to other
callers (line 4).

1: CloudQueueMessage message = queue.GetMessage();
2: message.SetMessageContent("new content");
3: queue.UpdateMessage(message,
4: Ti meSpan.FromSeconds(0.0), //make updates immediately visible

to others
5: MessageUpdateFields.Content | MessageUpdateFields.Visibility);

 ◾ Batch process a group of messages
 You can use GetMessages to retrieve a group of messages. For example, the following code reads

10 messages and places a 1 min lock on them and then processes the messages one by one.

Data Storage: Storage Services ◾ 209

foreach (CloudQueueMessage message in
 queue.GetMessages(10, TimeSpan.FromMinutes(1)))
{
 …
 queue.DeleteMessage(message);
}

 ◾ Read queue length
 You can use ApproximateMessageCount property to estimate the current queue length. This

is an estimation because the property is updated when the FetchAttributes method is called,
and the queue length may have changed between the following two lines:

queue.FetchAttributes();
int? count = queue.ApproximateMessageCount;

 ◾ Delete a queue

queue.Delete();

6.6 Monitor Storage Accounts
You can use Microsoft Azure Management Portal to monitor your storage accounts. By default,
Microsoft Azure does not collect metrics data from storage accounts, as shown in Figure 6.27. You
need to explicitly enable monitoring on the account’s CONFIGURE page.

Figure 6.27 Monitoring is turned off by default.

210 ◾ Zen of Cloud

6.6.1 Configure Storage Service Monitoring
On a storage account’s CONFIGURE page, you can modify monitoring and logging settings.
You can choose from two monitoring levels: Minimal or Verbose.

 ◾ Minimal
 By default, minimal level collects the metrics on success percentage, availability, and total

requests. However, you can customize metrics to be collected by the ADD METRICS icon
on the command bar.

 ◾ Verbose
 In addition to collecting the metrics under the minimal level, you can collect the

metrics on storage operations under the Verbose level. The configure page is shown in
Figure 6.28.

In addition, you can collect logs from storage services. The collected logs are saved in a BLOB
container. You can also specify the retention policy of monitoring data. By specifying 0 days
as retention policy you may save logs permanently. Obviously, saving more log data in storage
services accrues higher costs.

After monitoring has been enabled, you can monitor the performance of your storage accounts
on Microsoft Azure Management Portal. Just like monitoring other services, you can choose
which data series (up to 6) are to be plotted, and add/remove metrics to be monitored, as shown
in Figure 6.29.

Figure 6.28 Monitoring configuration page.

Data Storage: Storage Services ◾ 211

6.6.2 Cost of Service Monitoring
Microsoft Azure does not collect storage service metrics data because retaining the data generates
additional costs. In addition, transactions on monitoring and log data, such as creating log BLOB
and adding data entities to tables, are not free either (though the cost is really low). So, when you
configure monitoring settings, you need to understand the cost implications. If you have turned
on retention policy, the delete operations performed by the system are free. But pruning data
manually is charged as regular operations.

6.7 Summary
In this example, we studied Microsoft Azure BLOB storage, Table storage, and Queue storage ser-
vices through a series of examples. The rich set of NoSQL storage services provided by Microsoft
Azure can satisfy most requirements of large-volume data storage and processing. All storage ser-
vices provide corresponding client libraries as well as REST APIs. You can also control access to
storage entities by access keys, Shared Access Signatures, and stored data policies. To improve
performance and reduce costs, you can group multiple operations in batches, optimize partitions
of data, use paralleled uploads/downloads, and use dynamic entities to retrieve subsets of entity
properties. Moreover, you can monitor the performance of your storage accounts on Microsoft
Azure Management Portal as well as collect logs for diagnostics purposes.

Figure 6.29 Storage service monitoring page.

213

Chapter 7

Virtual Machines and
Virtual networks

In previous chapters, our definitions of websites and cloud services are logical definitions. These def-
initions are not bound to specific virtual or physical machines. In other words, the applications are
totally separated from underlying infrastructure. It is only when these applications are deployed on
Microsoft Azure that they are mapped to specific virtual machines. This kind of separation is an essen-
tial requirement for applications to fully leverage the benefits of PaaS. So, websites and cloud services
are preferred ways to build new cloud services. However, some projects may have additional require-
ments that cannot be satisfied by websites or cloud services, such as using Linux operation systems,
joining virtual machines to on-premise networks, and customizing virtual machines in depth. To
satisfy these requirements, Microsoft Azure provides Infrastructure as a Service (IaaS), which allows
you to work on an infrastructure level by directly managing virtual machines and virtual networks.

7.1 Microsoft Azure iaaS
You can use Microsoft Azure IaaS to create Windows-based or Linux-based virtual machines.
Instead of going through the lengthy process of acquiring and managing physical servers, you can
provision a new virtual machine on Microsoft Azure in minutes. In addition, Microsoft Azure
provides 99.95% SLA to multi-instance virtual machines and allows you to manage these virtual
machines using familiar tools such as Microsoft System Center.

Now let us learn the basic processes of virtual machine management on Microsoft Azure by
looking at several examples.

Example 7.1: Hello, Windows Virtual Machines!

Difficulty: *
In this example, we will use Microsoft Azure Management Portal to create a new Windows-based
virtual machine.

214 ◾ Zen of Cloud

 1. Log in to Microsoft Azure Management Portal.
 2. On the command bar, click the NEW icon, and then select COMPUTE→VIRTUAL

MACHINE→FROM GALLERY, as shown in Figure 7.1.
 3. On CREATE A VIRTUAL MACHINE dialog, select the Windows Server 2012 R2

Datacenter image (see Figure 7.2), and then click the next button.
 4. On the Virtual machine configuration page, select VERSION RELEASE DATA (you

would usually select the latest version). Pick a virtual machine size from various BASIC sizes
or STANDARD sizes. Then, enter the virtual machine name, as well as the administrator
credentials, and click the next button to continue (Figure 7.3).

 5. On the next page, you can create a new cloud service for the virtual machine or join the
virtual machine to an existing cloud service. In the previous chapters, we mentioned that a
cloud service is a container that can hold web roles and worker roles. You can also put virtual
machines in a cloud service. We will come back to multi-instance virtual machines later in
this chapter. Pick a region where you want the virtual machine to be hosted (we will discuss
Virtual Networks later). Create a new storage account to save disk images used by the virtual
machine. Leave AVAILABILITY SET to empty (more on this later). Then, configure end-
points to be defined on the virtual machine. By default, Microsoft Azure defines a remote
desktop endpoint as well as a remote PowerShell endpoint for virtual management. You can
define additional endpoints just like defining endpoints on web roles or worker roles. For

Figure 7.1 Creating a new virtual machine.

Figure 7.2 Virtual machine image gallery.

Virtual Machines and Virtual Networks ◾ 215

example, if your virtual machine runs a public-accessible web server, you need to define an
HTTP-based endpoint at port 80 to allow HTTP traffic. Click the next button to continue,
as shown in Figure 7.4.

 6. On the last page, you can select to install one or more virtual machine extensions. Microsoft
Azure virtual machine extensions can be dynamically injected to standard images to further
customize your virtual machines. Finally, click the check button to provision the virtual
machine (Figure 7.5).

 7. A couple of minutes later, your virtual machine is provisioned and is ready to use. On the
command bar, click the CONNECT icon to connect to the virtual machine, as shown in
Figure 7.6.

Figure 7.3 Virtual machine configuration.

Figure 7.4 Add the virtual machine to a cloud service.

216 ◾ Zen of Cloud

 8. Once you see the prompt for opening the .rdp file, click the Open button to continue
(Figure 7.7).

 9. On the Remote Desktop Connection dialog, click the Connect button to continue (this is
because the .rdp file is not signed), as shown in Figure 7.8.

 10. On the Windows Security dialog, enter the credential you specified when creating the vir-
tual machine, and then click the OK button to continue, as shown in Figure 7.9.

 11. Because the certificate of the virtual machine is self-signed, you will see a certificate warning.
Click Yes to continue, as shown in Figure 7.10.

 12. Now you have successfully connected to the remote desktop to manage the virtual machine,
as shown in Figure 7.11.

Figure 7.5 endpoint configuration.

Figure 7.6 the new virtual machine on Microsoft Azure Management Portal.

Virtual Machines and Virtual Networks ◾ 217

Figure 7.8 Remote desktop connection prompt.

Figure 7.9 Log in to the remote desktop.

Figure 7.7 open .rdp file.

218 ◾ Zen of Cloud

Figure 7.10 Certificate prompt.

Figure 7.11 Remote desktop window.

Virtual Machines and Virtual Networks ◾ 219

On the virtual machine’s details page, you can observe that Microsoft Azure has created a virtual
disk that holds the operation system. Your virtual machine is running on this virtual disk. The next
section will introduce you to using additional data virtual disks.

Example 7.2: Hello, Linux Virtual Machines!

Difficulty: *
In this example, we will use Microsoft Azure Management Portal to create a new Linux-based vir-
tual machine. Some steps will be omitted for simplicity. You can refer to the screenshots in Example
7.1 if needed.

 1. Log in to Microsoft Azure Management Portal.
 2. On the command bar, click the NEW icon, and then select COMPUTE→VIRTUAL

MACHINE→FROM GALLERY.
 3. On CREATE A VIRTUAL MACHINE dialog, select the OpenLogic CentOS 6.3 image,

and then click the next button.
 4. On CREATE A VIRTUAL MACHINE dialog, enter a name for the virtual machine.

Select the virtual machine size as Extra Small. Uncheck the UPLOAD COMPATIBLE
SSH KEY FOR AUTHENTICATION checkbox, and check the PROVIDE A
PASSWORD checkbox. Enter a password and then click the next button to continue, as
shown in Figure 7.12.

 5. Follow steps 5 and 6 in Example 7.1 to complete creating the virtual machine.

Note: By clicking the check button to create the virtual machine, you acknowledge that
you are getting this software from OpenLogic and that OpenLogic’s legal terms apply to it.
Microsoft does not provide rights for third-party software.

Figure 7.12 Virtual machine configuration.

220 ◾ Zen of Cloud

 6. After the virtual machine has been provisioned, you can use an SSH client, such as PuTTY
or OpenSSH, to connect to the virtual machine. Here we will use PuTTY.

Note: You can download PuTTY, which is a free implementation of Telnet and SSH
authored by Simon Tatha, from its official site
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

 7. You can find SSH details on Microsoft Azure Management Portal, as shown in Figure 7.13.
 8. Enter the information provided earlier to PuTTY, and click the Open button to continue, as

shown in Figure 7.14.
 9. Then, on the terminal window, you can log in to your new Linux virtual machine, as shown

in Figure 7.15.

7.2 Disk images and Virtual Disks
In Section 1.3.1, a list of currently supported virtual machine templates is provided. These tem-
plates are standardized system disk images. When you use one of these images to create a virtual
machine, the image is mapped into a virtual disk. You can also create system virtual disks locally,
upload the disk file (in .vhd format) to Microsoft Azure, and then use the disk file to create a new
virtual machine. In addition, you can capture an image of an existing virtual machine to the
image gallery, and use it to create new virtual machines later.

Now, let us go through a couple of examples of using disk images and virtual disks.

Example 7.3: Use a virtual data disk

Difficulty: **
In this example, we will add two data disks to the virtual machine we have created in Example 7.1.
We will add the first data disk via Microsoft Azure Management Portal and the second disk by
uploading a local disk file.

Figure 7.13 SSH information on the portal.

Virtual Machines and Virtual Networks ◾ 221

 1. Log in to Microsoft Azure Management Portal.
 2. On the virtual machine list view, or a virtual machine’s DASHBOARD view, click on the

ATTACH icon on the command bar, and select Attach empty disk menu. On Attach an
empty disk to the virtual machine dialog, enter a disk size (in this case, 10G). Set host
cache preference to NONE. Then, click the check button to complete the operation, as
shown in Figure 7.16.

 3. Once the disk has been attached, you can see this disk in the disk list of the virtual machine
(see Figure 7.17). But before you can use the disk, you need to log in to the virtual machine and
initialize it.

 4. Log in to the virtual machine via remote desktop. Then, in Server Manager, switch to File
and Storage Services view. You can see the new data disk in the disk list (see Figure 7.18).
Right-click the disk and select the Initialize menu.

 5. After initialization has finished, right-click the disk and select the New Volume menu.
 6. On the New Volume Wizard dialog, keep clicking the Next buttons to accept all defaults,

and finally click the Create button to create the disk volume. Once the disk volume is cre-
ated, the disk can be used normally.

 7. Next, we will create a second data disk by uploading a .vhd file. In the following steps, we will
create a new .vhd file on a Windows 8 machine.

Figure 7.14 enter SSH connection information to PuttY.

Figure 7.15 Remote terminal window to the Linux machine.

222 ◾ Zen of Cloud

 8. Open Control Panel→Administrative Tools→Computer Management.
 9. Right-click the Storage→Disk Management node, and select the Create VHD menu, as

shown in Figure 7.19.
 10. On Create and Attach Virtual Hard Disk dialog, enter a location for the .vhd file (you

can omit the .vhd extension. For example, when c:\haishi\newdisk is entered in the Location

Figure 7.16 Attach an empty data disk to a virtual machine.

Figure 7.17 Disk list of a virtual machine.

Virtual Machines and Virtual Networks ◾ 223

field, the generated .vhd file will be c:\haishi\newdisk.vhd). Enter a size for the new disk (in
this case, 200 MB). Then, click the OK button, as shown in Figure 7.20.

 11. Right-click the newly created virtual disk and select the Initialize Disk menu, as shown in
Figure 7.21.

 12. Once initialization is done. Right-click the disk and select the New Simple Volume menu.
Accept all default values on the wizard and create the volume.

Figure 7.18 initialize disk in server manager.

Figure 7.19 Create a new VHD file.

224 ◾ Zen of Cloud

 13. Back on the Computer Management window, right-click on the virtual disk again and
select the Detach VHD menu. On Detach Virtual Hard Disk dialog, click the OK button
to continue.

 14. Now the .vhd file is ready to be uploaded to Microsoft Azure. Here I use an open-source tool
AzCopy, which is a command-line tool you can download from GitHub (https://github.
com/downloads/%20WindowsAzure/azure-sdk-downloads/AzCopy.zip).

Figure 7.20 Create and attach virtual hard disk.

Figure 7.21 initialize local virtual disk.

Virtual Machines and Virtual Networks ◾ 225

 15. Use AzCopy to upload the .vhd file. Note that you need to use /blobtype:page to specify
the BLOB is a page BLOB. You can get the address of [BLOB URL] from the STORAGE
LOCATION field in Figure 7.16. See Figure 7.22 for a sample result.

azcopy [local folder] [BLOB URL] [file name]/destKey: [blob account
access key]/V/blobtype:page

 16. Back in Microsoft Azure Management Portal, open virtual machine list view, and then
switch to DISKS view. On the command bar, click the CREATE icon. On Create a disk
from VHD dialog, enter a disk name, and then click on the folder icon besides the VHD
URL field.

 17. Choose the storage account you have used in step 15. Locate the .vhd file you just uploaded.
Select the file, and then click the Open button. Back on Create a disk from VHD dialog,
click the check button to create the disk (Figure 7.23).

 18. Switch back to the virtual machine list view, click the ATTACH icon on the command bar,
and select Attach disk menu. On Attach a disk to the virtual machine dialog, pick the disk
you just created, and click the check button to continue.

 19. Once the disk has been attached, you can log in to the machine to manage the newly attached
data disk.

Figure 7.22 Use AzCopy to upload .vhd.

Figure 7.23 Choose the .vhd file in a storage account.

226 ◾ Zen of Cloud

Example 7.4: Create and use images

Difficulty: **
In this example, we will capture an image of the earlier virtual machine. Before you can capture an
image of a system disk, you need to run a sysprep tool on it (more on the tool soon). Then, you will
be able to safely capture an image of a system disk. You do not need to run sysprep on data disks.

 1. Log in to the virtual machine through remote desktop.
 2. Run the Command Prompt as an administrator.
 3. Go to c:\Windows\System32\sysprep folder, and run sysprep.exe.

Note: About sysprep.exe
To put it simply, sysprep is a Windows tool to reset virtual machine settings so that when
the virtual machine is rebooted, it will enter the configure mode to set up new product
license, computer name, user name, etc. Images in the gallery already have the sysprep
tool included.

 4. On the System Preparation Tool window, select Enter System Out-of-Box Experience
(OOBE). Check the Generalize checkbox. Then, set Shutdown Options to Shutdown.
Click the OK button to complete this step, as shown in Figure 7.24.

 5. When the tool finishes, the virtual machine is shut down. Now, you can click the CAPTURE
icon on the command bar to capture an image of your system, as shown in Figure 7.25.

 6. On Capture an image from a virtual machine dialog, enter a name for the image to be
captured. Check the I have run Sysprep on the virtual machine checkbox. Then click the
check button to complete the operation (the original virtual will be deleted once the image
has been captured), as shown in Figure 7.26.

 7. Once the image has been captured, you can use the image from MY IMAGES category when
creating a new virtual machine, as shown in Figure 7.27.

Figure 7.24 System preparation tool window.

Virtual Machines and Virtual Networks ◾ 227

Figure 7.25 the virtual machine is stopped after sysprep.

Figure 7.26 Capture a new image from the virtual machine.

228 ◾ Zen of Cloud

7.3 Virtual Machine Communications
If you view a virtual machine as another role in a cloud service, then it is easy to understand that
communications between virtual machines are quite similar to those in web role/worker role. In
the following sections, we will introduce endpoints and load balancing of virtual machines.

7.3.1 Virtual Machine Endpoints
Virtual machines within the same cloud service or on the same Virtual Network can directly
communicate with each other. In addition, you can define more endpoints on virtual machines
just like you define endpoints on web roles or worker roles. For example, if you want to run a web
server on a virtual machine, you can create a TCP Input Endpoint on port 80.

You can examine and edit endpoints on the virtual machine’s details page. Next we will learn
how to use endpoints on a virtual machine by an example.

Example 7.5: Running Node.js on a Linux virtual machine

Difficulty: ****
In this example, we will install and configure Node.js on the Linux virtual machine we have cre-
ated in Example 7.2. We will compile the Node.js source code and install it. This is obviously not
the most convenient way, but it is a good practice for Windows developers to get more familiarized
with the Linux system.

 1. Log in to Microsoft Azure Management Portal. Open the ENDPOINT view of the Linux
virtual machine. Define a new standalone TCP Input Endpoint on port 80, as shown in
Figure 7.28.

 2. Use PuTTY to log in to the Linux virtual machine.
 3. The CentOS image provided by Microsoft Azure does not have a kernel package, which we

will install first. Use vi to edit the configuration file:

Figure 7.27 Use the captured image to create a virtual machine.

Virtual Machines and Virtual Networks ◾ 229

sudo vi/etc/ym.conf

 Edit the file and comment out this line (by prefixing the line with a “#”):

exclude=kernel*

 Then execute the command

sudo yum install kernel-headers

 4. Now, we can use Git to download and compile Node.js:

sudo –i
yum install gcc-c++ make git
cd/usr/local/src/
git clone git://github.com/joyent/node.git
cd node
./configure
make
make install

 5. Compilation takes a while. Once it is done, go to the /usr/local/src/node/out/Releases/ folder.
 6. Use vi to create a Server.js file:

var http = require("http");
http.createServer(function(request, response) {
response.writeHead(200,{"Content-Type": "text/html"});
response.write("<h1>Hello from Node.js on Azure Linux VM</h1>");
response.end();
}).listen(80);

 7. Save the Server.js file. Then use

./node Server.js

 to launch the Node.js server.
 8. Now, you can open a browser and use the address http://[virtual machine name].cloudapp.net/

to access the web page served by Node.js, as shown in Figure 7.29.

Figure 7.28 Define a tCP endpoint on the virtual machine.

230 ◾ Zen of Cloud

7.3.2 Virtual Machines under the Same Cloud Service
We have learned through Example 7.1 that when you create a new virtual machine, the virtual
machine is put into a cloud service. You can also join multiple virtual machines to the same cloud
service. The virtual machines within the same cloud service can directly communicate with each
other. In addition, you can put multiple virtual machines behind a load balancer to provide high
availability. In this section we will use an example to learn how virtual machines communicate
with each other. And then we will implement a load balancing scenario in another example. We
will discuss high availability further in Chapter 9.

Example 7.6: Virtual machine communications within a Cloud Service

Difficulty: ***
In this example, we will provision a new Windows Server 2012 server and join it to the same cloud
service to which the virtual machine from Example 7.1 belongs. Two virtual machines within the
same cloud service will be able to communicate with each other, share files, and address each other
over the private network.

 1. Log in to Microsoft Azure Management Portal. Create a new Microsoft Azure 2012 virtual
machine. The steps are almost identical to those in Example 7.1, except for step 5. Instead of
creating a new cloud service, you should join the virtual machine to the same cloud service
in Example 7.1 (see Figure 7.30). In addition, when you enter the user credentials, make sure

Figure 7.29 Web page served by the node.js server.

Figure 7.30 Join a virtual machine to an existing cloud service.

Virtual Machines and Virtual Networks ◾ 231

to use the exact user name and password as you have entered in Example 7.1—because the
machines are not under a domain, we enter the same credentials on to both machines to
allow them to share files with each other. It is not mandatory to use the same credentials on
both machines. We use the same credentials simply to make file sharing easier.

 2. Once both machines have been created, log in to both machines through remote desktop.
Create a new folder on one of the machines and share the folder with the user. Then, on the
other virtual machine, access the folder by the address \\[virtual machine name]\[shared folder
name] (note the machine name does not include the cloudapp.net postfix). In Figure 7.31, you
can see a myshare folder being shared between the two virtual machines.

Example 7.7: Virtual machine load balancing

Difficulty: ***
In this example, we will enable IIS service on both virtual machines in Example 7.6, and then put
the two IIS servers behind a load balancer.

 1. Log in to one of the virtual machines. Launch Server Manager. Then click Add roles and
features (see Figure 7.32).

 2. On Add Roles and Features Wizard dialog, click the Next buttons till you reach the
Server Roles tab. Check Web Server (IIS), and then click the Next button again, as shown in
Figure 7.33.

 3. Accept all defaults till you reach the last screen. Then click the Install button. After
installation is done, click the Close button to close the wizard.

 4. Create a default.htm file under the c:\inetpub\wwwroot folder:

<h1>Web page served by Server A</h1>

 5. On the virtual machine, browse to http://localhost to make sure the web page is working
correctly.

Figure 7.31 Share files between two virtual machines.

232 ◾ Zen of Cloud

 6. Repeat the previous steps on the second virtual machine. The only difference is that the con-
tent of default.htm on the second machine is slightly different so we can observe which server
is serving the page:

<h1>Web page served by Server B</h1>

 7. Log in to Microsoft Azure Management Portal. Pick one of the virtual machines and add a
TCP endpoint on port 80. Make sure CREATE A LOAD-BALANCED SET is checked,
and then click the next button to continue, as shown in Figure 7.34.

Figure 7.32 Add roles and features link in Server Manager.

Figure 7.33 Add Roles and Features Wizard.

Virtual Machines and Virtual Networks ◾ 233

 8. In the next step, enter a name for the load-balanced set, and click the check button to com-
plete the operation (Figure 7.35).

 9. On the second virtual machine, create a new endpoint in the earlier load-balanced set, as
shown in Figure 7.36.

 10. On the next screen, set a name for the endpoint. Note in this case that both the public port
and the private port have been locked from editing. Click the check button to finish the
operation, as shown in Figure 7.37.

Figure 7.34 Add a new tCP endpoint.

Figure 7.35 Creating a load-balanced set.

234 ◾ Zen of Cloud

 11. Now, the two virtual machines are joined to the same load balancer. When we access the
address http://[cloud service name].cloud.app.net, the requests will be distributed to these
two machines. Because the default.htm files are different on the machines, when you keep
refreshing the browser by Ctrl + F5 (to avoid caching), you will observe the page coming from
different servers, as shown in Figure 7.38.

7.4 Virtual networks
Microsoft Azure Virtual Network is designed primarily for three scenarios:

 ◾ Create a virtual network on Microsoft Azure. You can allocate a private IPv4 address space
(10.x, 172.x, 192.x) for virtual machines to communicate over it.

Figure 7.36 Add an endpoint to an existing load-balanced set.

Figure 7.37 endpoint details.

Virtual Machines and Virtual Networks ◾ 235

 ◾ Extend your local network to Microsoft Azure. You can establish a site-to-site VPN con-
nection to a Microsoft Azure Virtual Network through an IPSec VPN device or a VPN
software.

 ◾ Link a single computer to a Microsoft Azure Virtual Network through a point-to-site VPN
connection.

7.4.1 Virtual Networks Overview
Virtual machines joined on a Virtual Network have stable private IPs. Although technically they still
use DHCP, their IP addresses do not change during their lifecycles because the IP leases are perma-
nent. Stable IP addresses allow you to set up services that require static IP addresses, such as domain
servers. In addition, you can also create and use your own DNS servers on Virtual Networks.

Virtual Networks also allow you to create Hybrid Cloud solutions across multiple cloud data
centers and on-premise networks. Many enterprises are running mission-critical systems on their
on-premise data centers. The complexity, risk, and cost of migrating all these systems to cloud are
often unacceptable. Hybrid Cloud allows enterprises to integrate existing legacy systems to new
services on cloud, providing a smooth path for cloud adoption with controlled risks, paced sched-
ules, and progressive returns.

Example 7.8: Create a virtual network

Difficulty: **
In this example, we will use Microsoft Azure Management Portal to create a new virtual network,
and join a virtual machine to it.

 1. Log in to Microsoft Azure Management Portal.
 2. On the command bar, click the NEW icon. Then, select NETWORK SERVICES→

VIRTUAL NETWORK→CUSTOM CREATE.
 3. On Virtual Network Details dialog, enter a name for the virtual network. Then, select

Create a new affinity group in the AFFINITY GROUP field. Pick a region and a name for
the affinity group (see Section 6.2.1 for details on affinity groups), and then click the next
button to continue, as shown in Figure 7.39.

Figure 7.38 Load-balanced virtual machines.

236 ◾ Zen of Cloud

 4. On the DNS Servers and VPN Connectivity page, click the next button to continue
(we will not use either custom DNS or VPN connections in this example), as shown in
Figure 7.40.

 5. On the Virtual Network Address Spaces page, you can define IPv4 address spaces and
subnets. Here we will take all defaults and directly click the check icon to complete the
operation, as shown in Figure 7.41.

 6. Create a new Windows Server 2012 virtual machine. On the Virtual machine configuration
page, pick the virtual network you have just created. Select a subnet (see Figure 7.42). When
the virtual machine is created, it will be joined to the virtual network, and be assigned an IP
address within the virtual network address spaces.

 7. After the virtual machine is created, you can observe its IP address on its DASHBOARD
page. Figure 7.43 shows that the virtual machine that was created got assigned to IP address
10.0.0.4.

Figure 7.39 Virtual network details dialog.

Figure 7.40 DnS server and VPn connection.

Virtual Machines and Virtual Networks ◾ 237

7.4.2 Point-to-Site Virtual Network
Configuring a point-to-site virtual network needs three steps:

 1. Create the virtual network and a virtual gateway.
 2. Acquire and upload a digital certificate for client authentication.
 3. Download and install the VPN client.

Now let us go through the steps in Example 7.9.

Figure 7.41 Define Virtual network Address Spaces.

Figure 7.42 Join a virtual machine to a virtual network.

238 ◾ Zen of Cloud

Example 7.9: Point-to-site virtual network—share between local machine and cloud

Difficulty: ****
In this example, we will create a new virtual network and join a virtual machine to it. Then, we will
configure a point-to-site virtual network and share files between your local machine and the virtual
machine on the virtual network.

 1. Log in to Microsoft Azure Management Portal.
 2. On the command bar, click the NEW icon. Then, select NETWORK SERVICES→

VIRTUAL NETWORK→CUSTOM CREATE.
 3. On the Virtual Network Details page, enter pointtosite as the virtual network’s name. Pick

or create an affinity group, and click the next button to continue.
 4. On the DNS Servers and VPN Connectivity page, check the Configure point-to-site VPN

checkbox, and then click the next button to continue, as shown in Figure 7.44.
 5. On Point-to-Site Connectivity dialog, click the next button to continue, as shown in

Figure 7.45.
 6. On Virtual Network Address Spaces dialog, click the add gateway subnet button, and then

click the check button to complete the operation, as shown in Figure 7.46.
 7. Create a new virtual machine. When you enter user credentials, be sure to enter the same

user name and password as the credentials on your local machine (see Figure 7.21). This
is to allow you to share folders and files between your local machine and your remote
virtual machine on the virtual network. Join the new virtual machine to the earlier
virtual network.

 8. After the virtual network has been created, go to its DASHBAORD page, and click the
CREATE GATEWAY icon on the command bar to create the dynamic gateway.

 9. Now let us create the digital certificate for client authentication. Here we will use two self-
signed certificates: one as the root certificate and the other for client authentication. We
will need to upload the root certificate to Microsoft Azure. Launch Developer Command
Prompt for VS2012 as an administrator.

 10. Go to the folder where you want to keep the certificate file. In this example, we will use the
c:\haishi folder.

Figure 7.43 internal iP address of a virtual machine.

Virtual Machines and Virtual Networks ◾ 239

 11. Use the following command to create the root certificate:

Makecert –sky exchange –r –n "CN=MyFakeRoot" –pe –a sha1 –len 2048
–ss My

 12. Use the following command to create the client certificate:

makecert -n "CN=MyLaptop" -pe -sky exchange -m 96 -ss My -in
"MyFakeRoot" -is my -a sha1

Figure 7.44 DnS Servers and VPn Connectivity dialog.

Figure 7.45 Point-to-site connection.

240 ◾ Zen of Cloud

 13. On the command prompt window, type in certmgr [enter] to run certmgr.exe. Export MyFakeRoot
to a MyFakeRoot.cer file (see Figure 7.47; note that you should not export the private key on the
Certificate Export Wizard). Note that if you are configuring the connection for another cli-
ent, you will need to install the client certificate (with private key) on the target machine.

 14. Back on Microsoft Azure Management Portal. On the virtual machine’s CERTIFICATES
page, click the UPLOAD icon on the command bar to upload the root certificate, as shown
in Figure 7.48.

Figure 7.46 Adding gateway subnet.

Figure 7.47 export root certificate.

Virtual Machines and Virtual Networks ◾ 241

 15. After the certificate has been uploaded, return to the virtual machine’s DASHBOARD
page. Click the Download the 64-bit client VPN Package link (for 64-bit client) or the
Download the 32-bit client VPN Package link (for 32-bit client). Install the downloaded
package. Because the package is not signed, you will need to ignore the security warning to
finish installation.

 16. After the VPN client has been installed, you can see the VPN network in the list of your
Windows networks (see Figure 7.49). Click to connect to the network.

Figure 7.48 Upload root certificate.

Figure 7.49 the VPn on Windows.

242 ◾ Zen of Cloud

 17. On the VPN client window, click the Connect button to connect to the VPN, as shown in
Figure 7.50.

 18. Once the VPN is connected, you can use ipconfig/all to query connection information, as
shown in Figure 7.51.

 19. Log in to the virtual machine. Create a new folder named Share and share it with the
current user.

 20. On the virtual machine’s DASHBOARD page, note down the machine’s internal IP address,
which in this case is 10.0.1.4.

Figure 7.50 VPn client window.

Figure 7.51 Connection information by ipconfig.

Virtual Machines and Virtual Networks ◾ 243

 21. On the local machine, open File Explorer and open \\10.0.1.4\Share to access the shared
folder. Figure 7.52 shows that I have created a new folder on the remote virtual machine
under the shared folder.

7.4.3 Site-to-Site Virtual Network
In earlier versions of Microsoft Azure, a site-to-site connection required specific VPN hardware
support from selected vendors. Now you can use the pure software virtual network solution
from Microsoft Azure to create a site-to-site virtual network. Considering this is not a common
activity carried out by developers, we will skip this part. Interested users may consult related
MSDN documents.

7.4.4 ExpressRoute
Many components in a hybrid cloud solution are not originally designed to communicate via
public Internet. As large enterprises implement hybrid solutions, they may face various problems
dealing with such components in terms of security and throughputs, etc. Azure ExpressRoute
allows these enterprises to establish dedicated connections between their data centers and Azure
so that they can have faster, more reliable, and more secured connections among there on-premises
resources and cloud resources. Interested readers can consult Microsoft Azure documentation at
http://azure.microsoft.com/en-us/services/expressroute/.

7.5 Summary
In this chapter, we studied Microsoft Azure Virtual Machines as well as Microsoft Azure Virtual
Networks. Through a series of examples, we learned detailed steps of creating both Windows-
based and Linux-based virtual machines. We also discussed endpoints on virtual machines. We
then configured a Node.js server on a virtual machine. We put two IIS servers behind a load
balancer for load balancing as well as high availability. Finally, we introduced Microsoft Azure
Virtual Network by creating a virtual network and a point-to-site VPN connection.

Figure 7.52 Use shared folder.

iiCLoUD SoLUtionS

A cloud-based solution has to be designed for cloud before it can thrive on cloud. In this section
of the book, we first examine some of the most popular architectures running on local data centers
today. We discuss both opportunities and challenges you may face when you attempt to migrate
these applications to cloud. Then, we discuss several key design aspects you need to consider when
designing for cloud: high-availability, high-reliability, performance, and security. Cloud presents
a different paradigm of how successful applications are designed, operated, and maintained. So,
designing for cloud requires a different mindset that may take time to set in. This section of the
book will cover some of the key mindset changes, such as scaling out and embracing errors, which
can help you a long way in designing new cloud-based solutions.

247

Chapter 8

Cloud Solution Architecture

In this part of the book, we will discuss how to design cloud solutions. The so-called cloud solu-
tions are solutions that leverage services and infrastructure supports provided by cloud platforms
to solve practical problems. Cloud services are common building blocks of cloud solutions, but
they are not all. A cloud solution consists of all related resources such as services, clients, virtual
machines, external services, legacy systems, and their integration. In this chapter, we will discuss
several common cloud solution architectures. Although these architectures share their names with
those on on-premise systems, there are some significant differences between the two.

8.1 Client/Server
Client/server is a very common architecture. Under client/server architecture, the server governs
and orchestrates all business processes. To ensure system performance and availability, the server
is often deployed on a server cluster. Coordinated by the server, clients can share data and work
together to carry out complex, distributed workflows. Clients are responsible for providing rich
user experiences, operating local devices, and taking some compute and storage workloads off the
server. The architecture diagram of a client/server system is depicted in Figure 8.1.

8.1.1 Characteristics of Client/Server Architecture
Because client/server has many favorable characteristics, it is a widely used architecture in spite of
a few shortcomings.

8.1.1.1 Benefits

 ◾ Rich user experiences
 Because client applications run on local machines, they can leverage local compute and

storage resources to provide an optimized user experience. For example, client applications
can use local GPUs to provide more dynamic, more expressive user interfaces. Clients can
also access local devices such as cameras, printers, and various sensors. In addition, user

248 ◾ Zen of Cloud

interfaces built using client-native gadgets provide consistent, predictable user experience,
allowing users to get started quickly. Predictability is a very important aspect for providing
pleasant user experiences. For example, if a UI element looks like a button but behaves like
an input box, it will surely cause confusions and complaints. To a certain extent, this is
why all mobile application stores (such as Apple Store, Windows Phone Apps+Games Store,
and Android stores) provide UI specifications and guidelines for developers to implement
consistent UIs.

 Without the constraints of network bandwidth and service throttling, client applications
can have frequent interactions with users. For example, a client application can utilize all
local CPU cores to handle complex tasks, such as image processing and data analysis, and
provide immediate feedback as the tasks progress.

 In addition, client applications can be deeply integrated with client environments, provid-
ing new ways of engagement, such as voice control, rich gestures, specialized input devices,
and many other innovative ways of user interactions. Clients can be unattended as well. For
example, a client application can be configured as a background service or a daemon that
automatically responds to user actions or system events. Another example is that various
plug-ins made by cloud storage providers allow users to upload/download files directly from
Windows Explorer.

 Modern browsers are constantly evolving. With features such as GPU-accelerated render-
ing, offline caches, and HTML5 supports, modern browsers can provide richer user experi-
ences. Some argue that client applications will be obsolete. However, the unique capabilities
of working with local devices and providing deep engagements are hard to be totally replaced
by browsers, which, for security concerns, will always have certain constraints accessing
local resources.

 ◾ Support offline mode
 One benefit of the client/server architecture is to allow users to use the system in both online

mode and offline mode. When a client becomes offline, it can still provide the necessary fea-
tures to keep the business going. For example, a client can still take orders when it is offline
and submit the orders when the connection to the server is restored. For many mission-
critical systems, even the slightest interruptions in workflow are unimaginable. A client
that can provide continuous access to business functions regardless of network conditions is
invaluable to many businesses.

 Of course, supporting offline mode has intrinsic complexity. Client applications have to
ensure the security of local data as well as the communications with the server. Moreover,
because data and workflow states are scattered in multiple machines, states of these machines
have to be synchronized, and conflicts have to be reconciled.

Server

Client Client…

Figure 8.1 Client/server architecture.

Cloud Solution Architecture ◾ 249

 ◾ Stickiness
 The stickiness of a service refers to a user’s tendency to keep using the same service instead

of switching to competitors. Because client applications are installed on local systems, users
naturally have a sense of ownership. Compared to a subscription relationship, the ownership
relationship has a better bond with the user, helping to create a stable, long-term relation-
ship. This sense of ownership is most obvious when it comes to mobile devices. Because
mobile devices follow users into their real-life contexts, their personal attachment to users
is unprecedented. Many successful social networks, media services, and content services
provide free mobile clients in order to harvest the benefits of this close relationship between
users and their devices.

8.1.1.2 Shortcomings

Because clients need to be installed on all machines that access the server, deployment and main-
tenance of client/server systems are complex. Configurations of client machines have endless per-
mutations. It is impractical to guarantee a client software will work on all those machines. In
addition, software provided by different vendors may conflict with each other, or have conflicting
requirements. Upgrading all the clients is also a tedious job—clients may have to be reconfigured;
different versions of a client may conflict; data might need to be migrated across client versions,
etc. Some larger enterprises have to set dedicated resources just to keep all the systems up to date.
All these complexities have been long criticized, and constant attempts have been made to allevi-
ate the problem in the past decades. Techniques such as installers, scripts, automatic updates, and
security policies are all targeted at streamlining client application management. At the same time,
the complexity has also driven people to consider other architectural choices, such as browser/
server and SaaS.

8.1.2 Client/Server Architecture on Cloud
Architecturally, client/server systems on cloud are quite similar to client/server systems on-prem-
ise. However, there are many hidden differences at the technical level, architecture level, and
business level.

 ◾ Differences at technical level
 At the technical level, the biggest difference is the running environment. On-premise

client/server systems are deployed to local data centers. Servers and clients reside on the
same private network, which provides secure, stable, and efficient connections among
them. Under this kind of setting, clients and servers can afford frequent exchanges of
large amounts of data. Systems that follow this communication pattern are sometimes
called chatty systems. Cloud-based client/server systems live in a totally different envi-
ronment, where clients and servers communicate over the open Internet. This environ-
ment raises additional requirements for secure data transfer, simplified communication
patterns, and reduced network utilization. In addition, server resources on cloud are
shared by all tenants. Cloud platforms impose strict constraints on resource utilization
to ensure fair usage of its resource pools. Because you are charged for the amount of
resources you use, inefficient system designs have direct financial consequences. So, sys-
tem efficiency is very important for cloud-based client/server systems to avoid throttling
and unnecessary costs.

250 ◾ Zen of Cloud

 ◾ Differences at architecture level
 Cloud-based client/server systems often have different deployment topology with on-prem-

ise client/server systems. Traditionally, many client/server systems use dedicated servers for
different customers. In other words, a server instance is only responsible for requests from
a designated customer. This kind of architecture is also called single-tenant architecture.
Although cloud-based client/server systems can use single-tenant architecture, a more effi-
cient choice is to use multitenant architecture. Under multitenant architecture, a cluster of
servers share the responsibility of handling requests from all customers so that the server
resources can be utilized more efficiently. For example, under a single-tenant architecture,
a service provider deploys three dedicated servers for three different customers. Among the
three customers, one customer generates significantly higher workloads, making his server
extremely busy. On the contrary, the other two servers remain idle because of the low activi-
ties of their corresponding customers. Under a multitenant architecture, because the three
servers share the workload from all customers, you can use the available resources on all
three servers to satisfy the needs of the busy customer. Multitenancy is radically different
from single-tenancy. We will discuss multitenancy in more detail in the next section.

 ◾ Differences at business level
 Although this book focuses on technologies, it is worth devoting several paragraphs to dif-

ferences at the business level. Understanding the differences is crucial in deciding a com-
pany’s, especially an ISV’s, cloud strategy, not to overlook its importance in determining
scopes and goals of cloud projects.

 First, an ISV needs to understand the difference between the licensing mode and the
subscription mode. In the traditional licensing mode, a software customer is both a ser-
vice provider and a service consumer. The customer is responsible for managing the host-
ing infrastructure to keep the service running. Major maintenance, such as system-level
upgrades, is often delegated to the ISV by maintenance contracts. Deploying a large-scale
system requires significant investment in both time and money. This serious commitment
creates a tight relationship between the ISV and the customer. Some ISVs also provide deep
customization services to tailor the service to satisfy the customer’s particular needs, which
leads to an even closer relationship with the customer. The subscription mode is very differ-
ent. A customer who subscribes to a service is just a service consumer. Without the need to
invest time and money to build up the supporting infrastructure, a cloud service customer
can implement a new system quickly without significant upfront investments. What often
happens is that a potential customer will subscribe to a trial version and evaluate the service
without any involvement of the ISV. On the one hand, the subscription mode increases the
risk of a customer to pick a new service. On the other hand, the relationship between a cus-
tomer and an ISV is not as close as in the traditional licensing mode. An ISV has to ensure
that the service design is intuitive enough so that a potential customer can navigate through
the system without much assistance. And the ISV has to figure out ways to continuously
engage with the customer to keep an active relationship.

 Second, the cost of implementing a cloud-based system is distributed to the whole lifes-
pan of a subscription. This means that it takes a much longer time for an ISV to realize the
whole sales amount. If the ISV’s sales capability has not changed, the same number of deals
will result in a much smaller income of the year. Moreover, because of the looser relation-
ships with the customers, the risk of losing a customer is higher as well. Both these factors
create problems in cash flow, sales force morale, customer relationships, and virtually all
areas of the company. Although we have lived through the actual cases of how ISVs succeed

Cloud Solution Architecture ◾ 251

or fail to make such leap, we are not experts in making the business model switch from
a low-volume–high-margin business to a low-margin–high-volume business. So we shall
not discuss this topic any further. The only point we are raising is that readers should be
aware that such challenges exist not only at the technical level but also at the business level
when the switch is made to subscription mode. The challenges should not be taken lightly
because they may generate serious consequences.

8.1.3 Multitenant System Design
A multitenant system uses a shared resource pool to satisfy the needs of multiple tenants. In
the traditional dedicated instances (also called multi-instance or single-tenant) design, each cus-
tomer has dedicated resources. Workflows and data of different customers are physically isolated
from each other. On the contrary, on a multitenant system, customer workflows and data are
not physically separated, but reside on shared resources with only virtual segmentations among
them. Multitenancy is a common characteristic of many cloud services. Cloud platforms such as
Microsoft Azure are massive multitenant systems.

 ◾ Cost advantages
 One of the major benefits of multitenancy is reduced hosting cost. A multitenant system

can dynamically allocate resources for different customers as their workloads change so that
resource utilization can be optimized. In a traditional data center, a server utilization rate at
25% is already considered outstanding performance. With virtualization, server utilization
rate may grow up to 50%–60%. On a cloud platform, a healthy multitenant system can
reach over 70% of server utilization rate. With higher utilization rates, the same number of
server resources can yield more outcomes, hence reducing the overall hosting cost.

 In addition, modern data centers, such as the ones used by Microsoft Azure, often
have better Power Usage Effectiveness (PUE) and lower carbon dioxide emissions. Such
benchmarks and their measurements are out of the scope of this book (except for the
following little note).

Note: About Power Usage Effectiveness (PUE)
PUE can be calculated using the following formula:

PUE

Total facility power

IT equipment power
=

Theoretically, the best PUE is 1, which means that all power used by a data center is con-
sumed by the IT equipment. Obviously, it is impossible to reach this best value because a
data center will always consume power for other purposes such as office lighting and eleva-
tor operations. Microsoft Azure data centers have the best PUEs in the industry, with some
centers reaching PUEs as low as 1.15.

 In terms of data storage, a multitenant system can use fewer resources to achieve higher
service levels. For example, let us assume 100 customers have subscribed for 1G of storage
space each. Instead of allocating 100G storage space, a multitenant system can allocate only
50G of space to satisfy all customers with an average utilization rate of 50%.

252 ◾ Zen of Cloud

 ◾ Manageability advantages
 Multitenant systems have unique manageability benefits as well. Because all customers share

the same system, upgrading the system will upgrade all customers at the same time. This
not only simplifies the deployment process, but also avoids the complexity of supporting
multiple versions at the same time. Of course, the clients of a client/server still need to be
individually updated.

 ◾ Opportunities for data mining and business intelligence
 Centralized customer data provides tremendous opportunities for data mining. With con-

sent from the customers, a service provider can aggregate and analyze data from multiple
customers. For instance, a service provider analyzes service usage patterns across its cus-
tomer base to determine areas to be improved. Getting consent from the customers is a
prerequisite. In most cases, customers want their privacy protected, including how they
are using the service. A service provider should fully honor user privacy and never make
inappropriate use of customer data. A major obstacle of cloud adoption is lack of customer
confidence in handing over critical data to a third party. Improper use of customer data
without consent not only violates privacy, but also undermines customers’ confidence in
cloud services.

Multitenant systems bring significant benefits, but they come with obvious shortcomings as well.
Complexity is one of the biggest disadvantages of multitenant systems. When designing a mult-
itenant system, a service provider has to consider the following:

 ◾ Tenant isolation
 Tenant isolation is not limited to isolation of customer data. It also means isolation of

access rights and workflow states. For example, on an on-premise system, the widely used
role-based security can satisfy most of the access control requirements. However, on a
multitenant system, user roles are no longer sufficient—any roles from one tenant should
not have any access to another tenant. At this point, there are not many good tenant-based
access control mechanisms other than claim-based authentication, which we will discuss in
Chapter 12.

 ◾ Problem containment and resource throttling
 For single-tenant systems, a crashing server only affects one customer that it serves. However,

on a multitenant system, a server-side error may impact the whole customer base. This is
obviously a bigger risk that has to be properly managed so that it does not generate sys-
temwide failures. In the following chapters, we will discuss several reliability concepts and
techniques, such as redundancy, failover, and autorecovery. In addition, multitenant systems
need to closely monitor resource usages to avoid a busy customer blocking the whole sys-
tem. This raises additional requirements in system design, such as resource monitoring and
request throttling. The increased system complexity in turn increases service design, devel-
opment, and maintenance costs.

 ◾ Management disadvantages
 The management benefits I just mentioned can turn into disadvantages in some circum-

stances. Not all customers are ready to accept the latest and greatest versions at all times.
Some customers would rather stay with a stable version that has been proven to work and do
not want to change their established workflows. Backward compatibility is usually an effec-
tive way to address such concerns.

Cloud Solution Architecture ◾ 253

In summary, multitenant systems bring many benefits, but they also involve great complexity.
A successful multitenant system can be very efficient and cost-saving, creating vast competitive
advantages. On the other hand, readers should fully realize the complexity of multitenant systems
and plan accordingly.

8.1.4 Migrating Client/Server Systems to Cloud
The most straightforward way to migrate an existing client/server application to cloud is to
use Microsoft Azure virtual machines to provision dedicated servers for customers. Such a
migration strategy does not impact system architecture and hence has lower risks. However,
such migration does not take full advantage of the high scalability and the high availabil-
ity of cloud. Especially when the number of customers increases, because each customer has
dedicated servers that need to be individually maintained and updated, the cost of operation
increases rapidly. In order to take full advantage of cloud, the system architecture will have to
be changed to include multitenant support, which requires significant investment. Of course,
once multitenancy is achieved, getting a new customer onboard will become easier and faster,
which helps in reducing sales cycles as well as operational costs. In the long run, a multitenant
system will help the service provider to establish a competitive edge and to gain the agility for
rapid market expansion.

A practical and effective approach to migrate to cloud is to divide and conquer. For exam-
ple, before migrating the whole system to cloud, you can pick among the rich set of SaaS
services provided by Microsoft Azure and start to leverage them to improve availability, reli-
ability, and scalability of these components. Such incremental improvements avoid the risk of
massive migration, and allow you to accumulate knowledge and experience for final migration
as you enjoy the benefits of reducing operational costs throughout the process. As an addi-
tional bonus, this approach also helps you to modularize your system to improve flexibility
and maintainability.

There are no fixed rules for multitenant system design. Although an increasing number of
systems are adding multitenancy support, there are no general, leading solutions in the industry.
Theoretically, multitenancy is not complex. However, as people say, “the devil is in the details.”
Before embarking on a multitenant project, you should fully realize the potential difficulties to
avoid overly optimistic project plans.

8.1.5 Client/Server Systems on Microsoft Azure
Regardless of the differences we just talked about, you can use your existing knowledge of client/
server systems on Microsoft Azure. For example, your service can be one of the following:

 ◾ A WCF service running on a Web Role or a Worker Role
 ◾ REST API running on a Web Role or a Microsoft Azure website
 ◾ A legacy service running on a Worker Role
 ◾ A legacy service running on a Microsoft Azure virtual machine

On the client side, you can still use existing tools and languages, such as Windows Form
Applications, XAML, mobile clients (iOS, Android, Windows Phone, Surface, etc.), and even
Console Application.

254 ◾ Zen of Cloud

As we previously discussed, because clients and servers communicate through open Internet,
client/server systems have additional requirements in system design. Here are some of the impor-
tant aspects to pay attention to:

 ◾ Information security. Developers have to ensure that communication channels between the
servers and the clients are secured at transportation level, message level, or both. Common
techniques include HTTPS, message signing, and encryption. In addition, the risk of being
attacked over the Internet is greater than on local networks. Developers should perform
attack modeling and guard against possible attacks such as playback, eavesdrop, man-in-the-
middle, code injection, and DoS, just to name a few.

 ◾ Client/server interactions. On a local network, frequent exchange of large amounts of data is
not always a problem, but could be a favorable design for faster performance and richer user
experience. However, the communication pattern will not only cause performance prob-
lems, but also generate unnecessary costs for egress data. During system design, developers
should pay attention to avoid chatty API design and reduce network traffic by techniques
such as client-side caching.

 ◾ User authentication. Many programs running on local data centers can leverage Windows
Active Directory for authentication and authorization. However, services hosted on cloud
cannot directly access these directories. We will discuss user authentication and authoriza-
tion on cloud in Chapter 12.

8.1.6 Mobile Clients
With the increasing popularity of smart phones and tablets, more client software has been migrated
to various mobile devices. Mobile clients bring both new opportunities and new challenges to
client/server system architects and developers. We will discuss integration between cloud and
devices in Section III of this book.

8.2 Browser/Server
The complexity of managing a large number of clients makes people search for alternatives. The
Internet provides the infrastructure, SaaS provides the contents, and JavaScript and HTML
enhancements provide the technology needed for browser/server applications to take off. The archi-
tecture diagram of a browser/server application looks quite similar to that of a client/server appli-
cation, as shown in Figure 8.2. During the early stages of browser/server development, the clients
running in a browser had limited functionalities because of technology constraints. This is why

Server

Browser Browser…

Figure 8.2 Browser/server architecture.

Cloud Solution Architecture ◾ 255

browser clients were commonly called “thin clients,” in contrast to the traditional “rich clients” or
“fat clients” that can provide richer user experience. However, with the development of browser and
scripting technologies, modern browsers are capable of supporting very rich feature sets nowadays.
The differences between so-called “thin client” and “fat client” are not that obvious anymore.

8.2.1 Characteristics of Browser/Server Architecture
 ◾ Advantage: ease of management

 One of the major benefits of browser/server architecture is ease of management. If you have
ever participated in releasing client software, you may have come across situations where a
client simply would not install, or would not function properly on some particular machines
without obvious reasons. If you were lucky, you would spend considerable time and effort in
creating, testing, and managing installable packages. Browser/server architecture eliminates
the need to manage a large number of clients. In addition, because the architecture allows
service users to always use the latest versions, it helps service providers to avoid the complex-
ity of managing multiple versions of clients.

 ◾ Advantage: market penetration
 Because a user can easily try out a service without installing any client software, it is easier

for a service provider to attract potential users to adopt a new service by providing a friction-
free experience. Of course, just as easily as a user would try out a service, it is easy for a
user to forget about the service. So, the friction-free experience is a double-edged sword. It
increases the opportunity for a service provider to present a new service to a wide audience,
but it requires the service provider to be able to lead the user from casual browsing to a seri-
ous commitment during the first few tries. This requires the service provider to provide not
only the required features, but also an intuitive and responsive experience.

 ◾ Advantage: cross platform
 Most browsers support standard HTML, CSS, and JavaScript. The combination of the three

essentially creates an abstraction layer that hides the details of underlying operation systems.
A web page can run on this sandbox environment regardless of whether the hosting environ-
ment is Windows, iOS, or Linux. Many websites also take advantage of the HTML support
on mobile devices to share a common client UI across different smartphones and tablets.

 ◾ Challenge: cross browser
 A cross platform is nice, but a cross browser is, at this point of time, not that easy to achieve.

Different browsers always behave differently, with some of the differences being intention-
ally introduced by browser vendors to gain advantage over competitors. Several techniques,
such as Java Applet, Adobe Flash, and Microsoft Silverlight have been developed to create
true cross-browser experience. But the additional installation often defeats the frictionless
goal. Working with cross-browser HTML, CSS, and JavaScript is also a major headache.
With the development of HTML5 standard and improvement in cross-browser tools such as
jQuery and Visual Studio CSS editor, the situation has improved greatly over the past few
years. However, a true cross-browser client is still hard to make.

 ◾ Challenge: other constraints
 For security reasons, in-browser JavaScripts cannot access local resources and devices freely.

For mobile devices, being able to interact with local sensors such as GPS, accelerometer, and
gyroscope is often very important for building highly interactive, rich user experiences. In
addition, generic offline support is just emerging with HTML5 standard. In many cases,
you may have to fall back on native clients in order to build the exact applications you want.

256 ◾ Zen of Cloud

8.2.2 Browser/Server Architecture on Cloud
Most cloud services with web front end can be considered browser/server systems. However, we can
further categorize them into two broad types. Commonly, we refer to services built on top of PaaS
as “native” cloud services, and services that are hosted on cloud using IaaS as cloud-hosted services.

In the previous section, we talked about multitenant design, which can be applied to both
client/server and browser/server systems. It is not unusual for native cloud services to adopt a mul-
titenant design in order to take full advantage of the reliability, scalability, and availability features
provided by PaaS. In this section, we will focus on one aspect of a multitenant browser/server
system—resource allocation among tenants. The key benefit of multitenancy is to allow a service
provider to use a shared resource pool to serve many tenants. A service provider needs to ensure
fair resource allocation among tenants so that a few busy tenants do not take over all the resources.

Two main mechanisms of managing resource allocation are quota and throttling. A quota
system imposes upper limits on the amount of resources each tenant can utilize. Usually, a service
provider sets up different subscription levels for customers to choose from, and each subscription
level grants a certain amount of storage and compute resources that a customer can consume.
Throttling, on the other hand, monitors resource usages and delays requests from customers who
have exceeded certain limits. Note that when throttling happens, the requests from offending
customers should not be rejected, but be queued up for later handling. This is because reject-
ing requests will affect system availability. Throttling is often harder to implement than a quota
system, because throttling requires dynamic resource monitoring and allocation. Fortunately,
Microsoft Azure cloud service supports multisite configurations. When combined with IIS throt-
tling, the feature can help a cloud service provider to throttle user requests based on different
subscription levels. Now let us see how it is done.

Example 8.1: Multisite Cloud Service and throttling by tenant

Difficulty: *****
Microsoft Azure Web Role supports multisite configurations, allowing a single Web Role to host
multiple websites. In addition, IIS 8 supports throttling based on CPU usages. In this example, we
combine these two features to achieve throttling by tenants. We create a new cloud service with a
single Web Role, on which we define two websites: one for important customers and one for com-
mon customers. For important customers, we allow as much as 40% of server CPU usage, while for
common users, we allow up to 30% of CPU usage.

Note: In this example, we use a local development machine. Running this example requires
Windows 8 or Windows Server 2012.

 1. First, we need to ensure that IIS 8 and ASP.NET 4.5 have been enabled. You can verify the
setting via Control Panel→Programs and Features→Turn Windows features on or off,
as shown in Figure 8.3.

 2. For testing purpose, we will need to modify the hosts file of the Windows system. Launch
Notepad as an administrator. Open the c:\Windows\System32\Drivers\etc\hosts file
(assuming your Windows is installed in the default folder). Append these two lines to the file
and save the file.

127.0.0.1 gold.haishi.com
127.0.0.1 silver.haishi.com

Cloud Solution Architecture ◾ 257

 3. Launch Visual Studio as an administrator. Create a new cloud service with an ASP.NET
MVC 4 Web Role (use an Internet Application template).

 4. First, check ServiceConfiguration.Cloud.cscfg and ServiceConfiguration.Local.cscfg
to ensure that the osFamily attribute on the root element is set to 3, which means using
Windows Server 2012 as the hosting operation system. On the virtual machines provided
by Microsoft Azure, Windows Server 2012 servers use IIS 8, which is the version we need
in this example.

 5. Edit ServiceDefinition.csdef as shown in Code List 8.1. Lines 2–8 and lines 9–14 define
two websites. Although they point to the same website code (..\..\..\MvcWebRole1), they have
defined different host headers (hostHeader) to distinguish from each other.

 6. Modify the Index() method of Controller\HomeController.cs. In Code List 8.2, line 3
puts the host header to ViewBag for display. Lines 4–7 set a different theme color based on
the header text—we will make use of these values in the next step.

 7. Modify Views\Home\Index.cshtml to add a <div> to display different background color
based on ViewBag.ThemeColor we put in Code List 8.2. The modified code is as shown in
Code List 8.3.

 8. Press F5 to launch the application. You will get a 400 error, which is expected. Modify
the address in the browser address bar to http://silver.haishi.com:81 (your port might
be different. When you modify the address, just change 127.0.0.1 to silver.haishi.com,
keep the port).

 9. Now you will see that the header information is displayed on a gray background, as shown
in Figure 8.4.

 10. You can also access the other site by the address http://gold.haishi.com:81/. Close the
browser to terminate the application when you are done.

 11. Under the Controllers folder, add a new empty MVC controller named
CPUThrottleController.cs. Add a HeavyLoad method, which uses a tight loop to simulate
a heavy load. Note that at line 11 in Code List 8.4 we specified the loop count to 4 to keep
all CPU cores busy because we are using a 4-core system.

Figure 8.3 Verify if iiS features have been installed.

258 ◾ Zen of Cloud

 12. Create a CPUThrottle folder under the Views folder; then add a new Index.chtml beneath it:

@{
 ViewBag.Title = "Index";
}
<h2>Index</h2>
<div class="killerback">
 <div class="killer">
 @Html.ActionLink("Kill CPU", "HeavyLoad")
 </div>
</div>

CODE LIST 8.1 DEFINE MULTIPLE SITES ON A WEB ROLE

 1:<WebRole name="MvcWebRole1" vmsize="Small">
 2: <Sites>
 3: <Site name="gold" physicalDirectory="..\..\..\MvcWebRole1">
 4: <Bindings>
 5: <Binding name="Endpoint1" endpointName="Endpoint1"
 6: hostHeader="gold.haishi.com"/>
 7: </Bindings>
 8: </Site>
 9: <Site name="silver" physicalDirectory="..\..\..\MvcWebRole1">
10: <Bindings>
11: <Binding name="Endpoint1" endpointName="Endpoint1"
12: hostHeader="silver.haishi.com"/>
13: </Bindings>
14: </Site>
15: </Sites>
16: <Endpoints>
17: <InputEndpoint name="Endpoint1" protocol="http" port="80" />
18: </Endpoints>
19: <Imports>
20: <Import moduleName="Diagnostics" />
21: </Imports>
22:</WebRole>

CODE LIST 8.2 USE REQUEST HEADER IN INDEX METHOD

1:public ActionResult Index()
2:{
3: ViewBag.Message = Request.Headers["Host"];
4: if (Request.Headers["Host"].Contains("gold"))
5: ViewBag.ThemeColor = "gold";
6: else
7: ViewBag.ThemeColor = "silver";
8: return View();
9:}

Cloud Solution Architecture ◾ 259

 13. Modify the Site.css file under the Content folder to add the following two styles:

.killer {
 background-color: #FFFF00;
 border: 20px dashed #000000;
 font-family: Arial, Helvetica, sans-serif;
 font-size: 48px;
 font-weight: bold;
 padding: 10px;
 margin: 10px;
 text-align:center;
}
.killerback {
 background-color: #FFFF00;
}

CODE LIST 8.3 ADDED DIV ON THE INDEX VIEW

@{
 ViewBag.Title = "Home Page";
}
@section featured {
 <section class="featured">
 <div class="content-wrapper">
 <d iv style="background-color:@ViewBag.

ThemeColor">
 <hgroup class="title">
 ...
 </div>
 ...

Figure 8.4 Header information displayed on page.

260 ◾ Zen of Cloud

 14. Finally, modify the Shared_Layout.cshtml file to change the Contact ActionLink to “CPU
Pressure Test”:

<ul id="menu">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @ Html.ActionLink("CPU Pressure Test", "Index",

"CPUThrottle")

 15. Run the application again. Click on the CPU Pressure Test link, and then click on the Kill
CPU link, as shown in Figure 8.5.

 16. On Task Manager, you can observe that the CPU is 100% busy, as shown in Figure 8.6.
 17. If you open Resource Monitor, you will observe that the tight loop can cause a certain

amount of damage. You can see that all 4 cores on the system are 100% occupied, as shown
in Figure 8.7.

 18. Stop the application. In the next step, we will use the IIS 8 throttling feature to ensure a
heavy load from a single tenant does not bring down the whole system.

CODE LIST 8.4 CPUTHROTTLECONTROLLER

 1:using System.Threading;
 2:…
 3:public class CPUThrottleController : Controller
 4:{
 5: public ActionResult Index()
 6: {
 7: return View();
 8: }
 9: public ActionResult HeavyLoad()
10: {
11: int count = 4;
12: for (int i = 0; i < count; i++)
13: {
14: ThreadPool.QueueUserWorkItem((obj) =>
15: {
16: Random rand = new Random();
17: while (true) { rand.Next(); }
18: });
19: }
20: return new HttpStatusCodeResult(200);
21: }
22:}

Note: IIS Features for Multitenancy
On IIS 8, every application pool runs in its own sandbox environment. These sandbox
environments run under different user identifiers, which makes it possible to limit the
maximum resource (such as CPU) the application pool can use. The design can be traced

Cloud Solution Architecture ◾ 261

back to IIS 7. However, on IIS 7, when a tenant exceeds its limit, the corresponding applica-
tion will be recycled, causing service interruptions. On IIS 8, the requests from the offend-
ing tenant will be postponed, but the application will not be recycled. In addition, you can
configure IIS 8 so that it allows an application to take more resources than allocated when
the system is not busy, but only throttles resource usage when the system is under stress.

Figure 8.5 Kill CPU button.

Figure 8.6 CPU being saturated.

262 ◾ Zen of Cloud

 19. On the Web Role project, add a reference to assembly%system32%\inetsrv\Microsoft.Web.
Administration.dll. Then, set its Copy Local property to True, as shown in Figure 8.8.

Note: Setting a reference assembly’s Copy Local property to True ensures the assemblies will be
deployed to Microsoft Azure when the cloud service is deployed. If your project uses assemblies
only in your local GAC or other third-party assemblies without packaging them with your cloud
service package, your cloud service will fail to start. Of course, the hosting virtual machines
provided by Microsoft Azure already include .Net and Microsoft Azure runtime assemblies.

Those interested in finding out more on this topic may refer to
http://www.iis.net/learn/get-started/whats-new-in-iis-8/iis-80-cpu-throttling-sand-
boxing-sites-and-applications.
IIS 8 also provides other features to support multitenancy. For instance, IIS 8 supports high
website density, allowing you to deploy thousands of websites on a server. It also supports
centralized certificate management, which greatly simplifies certificate distribution and
renewal. In addition, IIS 8 also supports dynamic throttling per IP address based on traffic
generated from the IP.

Figure 8.7 CPU usage charts in Resource Manager.

Cloud Solution Architecture ◾ 263

 20. Next, we will deploy our Web Role to IIS 8 instead of the default IIS Express. In Solution
Explorer, right click the Web Role project and select the Properties menu to open its prop-
erties page. On the Web tab, uncheck Use IIS Express. Then, press Ctrl + S to save the file.
If the system prompts to create a virtual directory, click the OK button to continue, as shown
in Figure 8.9.

 21. Replace the code for WebRole class in WebRole.cs with the code in Code List 8.5. This
code defines a customer throttling policy (lines 27–31). Then, when the role is started, two
instances of the policy are created. One is for “gold” customers, who are allowed to use as
much as 40% of the CPU, and the other is for “silver” customers, who can use as much as
30% of CPU. Finally, lines 14–19 find the corresponding application pool and change the
application pool settings.

 22. Launch the application again. You can open both http://gold.haishi.com:81/ and http://
silver.haishi.com:81/ and click on the Kill CPU buttons. Because of the CPU throttling
protection, the CPU usage is kept at a safe level regardless of the eight tight loops we run, as
shown in Figure 8.10.

Figure 8.8 Set assembly Copy Local property to true.

Figure 8.9 Configure the Web Role to use full iiS.

264 ◾ Zen of Cloud

8.2.3 Difficulties of Adapting an Existing Single-Tenant
Browser/Server Application for Multitenancy

Although browser/server architecture fits the cloud environment pretty well, migrating existing
browser/server services to cloud might be problematic, especially if the browser/server service
did not take network delays into consideration, relied on local services and devices, and was not
designed for multitenancy. Obviously, you can start over by writing a new multitenant service.
However, you would most likely like to upgrade an existing single-tenant service to a multitenant
service. In this section, we will discuss some of the major difficulties of making such changes. In
the next section, we will introduce a strategy that allows you to take a single-tenant service and
host it on Azure as if it were a multitenant service.

CODE LIST 8.5 WEB ROLE IMPLEMENTATION

 1:public class WebRole : RoleEntryPoint
 2:{
 3: public override bool OnStart()
 4: {
 5: CustomerProfile[] profiles =
 6: { new CustomerProfile{Name ="gold", CPUThrottle =

40000},
 7: ne w CustomerProfile{Name ="silver", CPUThrottle =

30000}};
 8: using (ServerManager serverManager = new ServerManager())
 9: {
10: var applicationPools =
11: serverManager.ApplicationPools;
12: foreach (var profile in profiles)
13: {
14: var appPoolName =
15: serverManager.Sites
16: [RoleEnvironment.CurrentRoleInstance.Id
17: + "_" + profile.Name]
18: .Applications.First().ApplicationPoolName;
19: var appPool = applicationPools[appPoolName];
20: appPool.Cpu.Limit = profile.CPUThrottle;
21: appPool.Cpu.Action = ProcessorAction.Throttle;
22: }
23: serverManager.CommitChanges();
24: }
25: return base.OnStart();
26: }
27: private struct CustomerProfile
28: {
29: public string Name;
30: public int CPUThrottle;
31: }
32:}

Cloud Solution Architecture ◾ 265

In the following paragraphs, we will discuss the main difficulties of achieving multitenancy at
the presentation layer, business layer, and data layer.

 ◾ Presentation layer
 At the presentation layer, a big challenge is customization. Under a single-tenant archi-

tecture, customizations are often static and sometimes hardcoded. This is because each
deployment of the system only serves for a single tenant. So the service does not need the
complexity of defining and loading customization settings dynamically. On the contrary,
a multitenant system needs to serve multiple tenants at the same time, so it has to allow
dynamic customizations based on user contexts. Designing and implanting a flexible and
yet maintainable dynamic customization system is not easy. To illustrate with a simple
example, let us assume you want to create a simple Twitter reader site, which allows you
to display latest tweets from multiple accounts. Each user should be able to customize the
layout of the page, as well as to control if tweet pictures should be embedded. Figure 8.11
shows a mock-up of such a UI.

 Now the UI does not look complex at all. What if you want the UI to be fully customiz-
able? You will probably need artifacts like the following:

 − Mechanism of storing customization settings
 − Mechanism to apply these settings dynamically
 − UI for users to change these settings

 In addition, for better user experience, you may want to have a template gallery, drag-and-
drop editing, live preview, and tenant-level templates. All these are just for the simplest case
of customization. In some systems, different customers may want to have different data
entry forms and different workflows, which are even more complicated.

Figure 8.10 CPU usage is being throttled.

266 ◾ Zen of Cloud

 ◾ Business layer
 At the business layer, the biggest challenge is state management, which presents two levels of

problem.
 First, a single-tenant system, especially a system that is not designed to be scaled out, often

stores a large number of temporal states in its local storage or in memory. All user operations
have to be carried out on a single server, because only the server holds all the necessary
states. An obvious example is a shopping cart. If the state of a shopping cart is saved in
memory, a user has to return to the saved server whenever he or she attempts to update the
cart. Temporal states such as shopping carts need to be externalized to independent storages
so the application servers can become stateless, which is essential for seamless scaling of
application servers.

 The second level of the problem is much harder to solve. This problem is caused by the
central, or global, components in the system. A global component assumes it has global
knowledge of the entire system, and it often assumes it has a singleton instance across the
entire system. Such assumptions will cause many problems when the system is scaled out.
We will present a case study of this problem in Chapter 9. As a matter of fact, because these
components are single point of failures (SPoF) of the system, they should be eliminated
regardless of whether the system is to be migrated to cloud.

 ◾ Data layer
 At the data layer, the main challenge is that the database is not designed for storing data

from multiple tenants. On one hand, modifying the database schema to accommodate mul-
tiple tenants (such as by adding a tenant id column to all tables) is a tedious work and has
significant impact on the entire system. On the other hand, if we keep a separate database
for each tenant, we need to face the extra work of operating, maintaining, and updating
multiple databases.

 In many legacy systems, we often see the all-purpose database design, which uses a single
database to hold all information that needs to be permanently or temporarily stored. All kinds
of data, whether transactional data, log data, or messages, are stuffed into a unified database.

Figure 8.11 Fictional twitter reader Ui.

Cloud Solution Architecture ◾ 267

The design is sometimes justified in the name of simplicity and ease of management, but
most of the time it is just a result of a habit. When we design databases, we should treat
different types of data separately and choose the most appropriate techniques. For example,
we may want to keep business data models in a relational database, but put log data into an
NoSQL database because of the different write and access patterns as well as the different
retention and backup requirements.

 When designing a data layer, consider the following principles:
 − Use smaller storages. Consider categorizing data into different types and using different

storage techniques. For example, log data can be saved on NoSQL storages; temporal
data can be saved in cache clusters; business data can be saved in relational databases;
analytical data can be saved in data warehouses; and so forth. For different types of data,
choose the most appropriate redundancy, backup, and archiving strategies.

 − Periodically release unused storage spaces. Remember that cloud is cheap, but it is not
free. Retaining unnecessary data means unnecessary costs.

 − Avoid business logic in the data layer. Traditionally, many systems use database stored
procedures to implement business logic. With the encouragements of leading database
vendors, writing business logic directly on the database was once a very popular choice.
Migrating such systems to a different database platform is extremely hard. In a changing
world, having business logic bound to a particular database technique often turns out
to be a bad bet.

8.2.4 Host Single-Tenant Systems on Microsoft
Azure for Multiple Tenants

Converting a single-tenant system into a multitenant system is a huge task. Not all service devel-
opers have the will and the budget to take up such endeavors. Here we are going to present a strat-
egy that uses IaaS, automation scripts, and supporting services to host single-tenant services as if
they were multitenant services on Microsoft Azure. Note that at the time of writing this text, you
will need to develop supporting services yourself if you take this approach, as there are no out-of-
box services to support this strategy.

The strategy uses a four-step approach: node classification, virtualization, topology abstrac-
tion, and finally deployment.

 ◾ Node classification
 First, we need to classify service components (hereafter referred to as “nodes”) in a single-

tenant system into three categories: stateless nodes, stateful nodes, and global nodes.
 − Stateless nodes refer to the service components that do not maintain local states (though

they can use externalized state stores). This kind of components can be scaled out directly
without any changes. An important characteristic of a stateless node is that each request
can be handled independently, and information carried by the request is sufficient for
the node to handle the request correctly without relying on any contextual information.

 − Stateful nodes are the services components that are aware of user sessions. For these
nodes to function as expected, they need to use contextual information saved in these
sessions. Most web technologies support externalizing session states to independent stor-
ages, hence making the nodes themselves stateless. If such externalization is impossible,
we will need to utilize certain sticky session/server affinity techniques to ensure a user is
routed to the same server throughout a session.

268 ◾ Zen of Cloud

 − Global nodes are the service components that assume to be singleton components that
have complete knowledge of the entire system. These components cannot participate in
horizontal scaling. Instead, we need to provide isolated environments for them so that
they can still operate under single-tenant settings. Many single-tenant databases can be
put into this category.

 ◾ Virtualization
 Then, we need to create deployable packages for each of the identified nodes. These packages

can be Microsoft Azure websites, Microsoft Azure cloud services, or virtual machine images.
These packages will be used as standard templates for scaling out, so they should not contain
any customizations or customer data.

 ◾ Topology abstraction
 After classification, we can plan for server deployment. The key to this part is to use different

routing mechanisms for different types:
 − Request-level routing. This applies to stateless components, as well as local state compo-

nents, when local states can be externalized to an external storage, such as a database or
a cache cluster.

 − Session-level routing. This applies to local state components that require sticky sessions
or server affinity.

 − Tenant-level routing. This applies to global state components as well as components that
require tenant isolation.

 Request-level routing is supported by Microsoft Azure out-of-box service. We simply create
multiple instances of your services to be load-balanced. In addition, we can use different
session state providers to externalize session states, such as the one that uses Microsoft Azure
Caching. We can also use services such as Application Request Routing to achieve sticky
sessions. The real challenge resides in tenant-level routing. There are no out-of-box services
on Microsoft Azure yet, but we can easily list out two of the high-level requirements: the
service shall add minimum overheads, and the redirection decision shall be based solely on
untampered, authoritative information, such as a claim in the user’s security context. As
mentioned earlier, at this point, you need to author such services yourself. Possible directions
include a lightweight cloud service, a URL rewrite module, or a DDNS service.

 As for high availability, we can use multiple instances as backups of each other for the first
two routing methods. For tenant-level routing, we will need to set up a master–slave deploy-
ment to provide high availability using failovers. Hence, our routing service shall support
failover based on a priority list of server instances.

 ◾ Deployment
 This topology is a logical definition, which will be instantiated during deployment. Automated

system deployments and scaling, including deployments for newly provisioned tenants after
initial deployment, can be performed by PowerShell scripts (see Chapter 11), configuration
management systems such as Chef, Puppet and DSC. Microsoft Azure Caching service can
be used for externalized state storage. Software routers as well as contextual services can be
implemented as Microsoft Azure cloud services.

Note: Service Gateway
Service Gateway is an open source project (http://sg.codeplex.com/) that provides tenant-
level routing, among other features.

Cloud Solution Architecture ◾ 269

8.3 n-tiered Architecture
n-tiered architecture is not cloud-specific. It is a general architecture that separates the
presentation layer, the business layer, and the data layer, as shown in Figure 8.12. This kind of
separation of concerns increases the modularity of the system, hence greatly improving main-
tainability of the system. It is a popular choice not only for on-premise enterprise systems, but
also for cloud-based systems.

8.3.1 Characteristics of n-Tiered Architecture
 ◾ Advantage: separation of concerns

 Separation of concerns is a key principle of system design as well as an essential quality of
good architecture. The principle requires a component to be responsible for no more than
one type of work, and it requires a logical work unit not to be distributed across different
components. If you found a component taking up more than one responsibility, or several
components having to constantly work together to perform a task, you might spot problems
in how component boundaries have been drawn. A system with clear separation of concerns
is easier to maintain and upgrade. This is because it is easy to predicate and control the
effects of changes when changes are made. On the contrary, a system without such qualities
is less maintainable because any changes may cause unpredictable ripple effects that have
broad impacts on the entire system.

 ◾ Advantage: scaling independently
 Different layers of an n-tiered system can be scaled independently. For example, for a system

that has complex business logic, multiple business layer instances can be used to share the
workload, while a single presentation layer instance might suffice. On the other hand, for a
system that has complex data operations, the data layer can be scaled out to increase system
throughput. In addition, the independent scaling can also minimize operational costs with-
out sacrificing system performance as you can fine-tune each layer separately.

 ◾ Advantage: flexible coupling options
 Components in an n-tiered system can communicate with each other by different means. In

addition to direct communication, they can also exchange data via a middle tier such as a
service bus. The loose coupling provides buffers between components so that the workload
from one layer can be gradually released to another layer to avoid overloading a slower layer.
This is just one of the benefits of loose coupling. We will discuss loose coupling in more
detail in Chapter 15.

 ◾ Advantage: parallel development and deployment
 Layers of an n-tiered system can be developed using different languages, and can be deployed

on different hosting environments. For example, the presentation layer can be authored as
a Microsoft Azure cloud service, while the business layer can be a legacy service hosted on
a virtual machine, and the data layer can be an SQL Server running on a local network.

Presentation layer Business layer Data access layer Database

Figure 8.12 n-tiered architecture.

270 ◾ Zen of Cloud

This is the so-called hybrid cloud deployment, where heterogeneous techniques and hosting
environments are orchestrated to deliver a complete solution.

 ◾ “Disadvantage”: Complexity
 One perceived disadvantage of n-tiered architecture is that it is complex. While it is true

that an n-tiered system is comprised of multiple components, making it appear complex,
we should remember that n-tiered architecture is meant for constructing a complex system.
In other words, the complexity does not come from the architecture, but from the problem
itself. As a matter of fact, because it allows us to divide and conquer a complex problem,
n-tiered architecture helps us to simplify the problem so we can tackle a complex problem in
a systematical way.

8.3.2 n-Tier, MVC, and MVVM
 ◾ MVC

 MVC is a design pattern that appeared in the 1970s. A system following an MVC pattern
is made up of Models, Views, and Controllers. There are different ways of understanding
and depicting an MVC pattern. Figure 8.13 shows a controller-first variation of the pattern,
which is how the architecture of ASP.NET MVC looks. There are several other patterns
based on MVC that have been developed over time, including MVP and MVVM.

 ◾ MVVM
 The core concept of MVVM is a View Model, which is an abstract view that can be bound to

a view via data binding. View Models separate business logics and views so that when the UI
changes, the business logic is not affected. Another benefit of MVVM is testability, which
allows View Model testing to be automated by substituting UI with test scripts. People hold
different opinions on the exact responsibility of a View Model. Some think Controllers
should be reintroduced into the MVVM pattern, while others think the responsibility of a
Controller should be merged into View Models. In addition, people have been debating as
to what exactly a Model should do as well. In order for MVVM to guide the whole system
design, however, it has to be supplemented with more granularities.

 ◾ n-tier, MVC, and MVVM
 n-tier architecture and MVC are often used together in a system. n-tier is used to design the

overall architecture, while MVC can be used to design the presentation layer. For example,
you can create a cloud service with a web front end and a Worker Role back end, and the
Web Role can use ASP.NET MVC for the presentation layer design.

Controller

Operate

Model
Update

View

NavigateObserve

Use

Figure 8.13 ASP.net MVC architecture.

Cloud Solution Architecture ◾ 271

 Because of the need to support rich user interactions, AJAX has become a mainstream
technique for website development. In addition, multiclient support raises the requirement
of designing client-agnostic APIs. We can combine n-tiered architecture, ASP.NET MVC
Web API, and MVVM to construct clearly structured, maintainable rich user interfaces,
which we will learn in the following example.

Example 8.2: ASP.NET Web API and MVVM

Difficulty: ***
In this example, we will create a simple website for customer management. Because the key of the
example is to demonstrate how to combine ASP.NET Web API and MVVM to create an interactive
web, we will not focus on the completeness of the site. Instead, we will just build enough to present
the programming model. Here we are going to use knockout.js, which is an open-source library for
implementing MVVM pattern with JavaScript.

 1. Launch Visual Studio as an administrator. Create a new cloud service with an ASP.NET
MVC 4 Web Role. When we create the Role, we will use the Empty template, instead of the
Internet Application template we commonly use.

 2. Add a Customer class under the Models folder of the Web Role. The class code is shown in
Code List 8.6.

 3. Add a new API-controlled named CustomerController (using the API controller with
empty read/write actions template) to the Controllers folder. We can delete all but the
Get() method, as shown in Code List 8.7.

 4. Add a new HomeController (using Empty MVC controller template) to the Controllers
folder:

public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }
}

 5. Add a Home controller under the Views folder. Then, add a new Index view under the new
folder.

 6. Right-click the Web Role and select the Manage NuGet Packages menu.
 7. On the Manage NuGet Packages dialog, search for “knockout.js.” Then, click the Install

button to install knockout.js, as shown in Figure 8.14.
 8. Similarly, add a reference to the jQuery NuGet package.
 9. Replace the code in Index.cshtml with the code in Code List 8.8. Lines 1–7 of the code

define the user interface (the View), which has a <div> tag bound to a Customers collection

CODE LIST 8.6 CUSTOMER MODEL

public class Customer
{
 public int Id { get; set; }
 public string Name { get; set; }
 public int Age { get; set; }
}

272 ◾ Zen of Cloud

through the data-bind attribute. Lines 3–6 define the template for each customer display.
Lines 11–22 define the View Model. As you can see, the View Model knows nothing about
the View. The View is totally separated from the back-end calls (such as in lines 24–28).
Furthermore, the JavaScript code and the HTML tags are not mixed together. Because each
component has its distinct responsibility, the UI code is clean, easy to understand, and easy
to maintain.

Note: Your jQuery version and knockout version are likely to be higher.

 10. Press F5 to launch the application. Observe the customer list displayed on the screen.
Modify the customer name in one of the customer name fields, and then click the Update
button. Although we did not write any code to update the View Model with the new values
on the View, because of the two-way data bind, the View Model has been automatically
updated, as shown in Figure 8.15.

CODE LIST 8.7 CUSTOMERCONTROLLER

using MvcWebRole1.Models;
…
public class CustomerController : ApiController
{
 public IEnumerable<Customer> Get()
 {
 return new Customer[]
 {
 new Customer { Id = 1, Name= "Customer A", Age= 24},
 new Customer { Id = 2, Name= "Customer B", Age = 30}
 };
 }
}

Figure 8.14 knockout.js nuGet package.

Cloud Solution Architecture ◾ 273

8.3.3 Microsoft Azure Service Bus Queue
Before we discuss developing n-tiered services on Microsoft Azure, we will introduce Microsoft
Azure Service Bus Queue service because it is an important technique to achieve loose coupling
between different layers.

Microsoft Azure Service Bus provides a series of integration services, including Queue, Topic/
Subscription, Relay, and Notification Hub. To use these services, you first need to provision a
namespace, in which you can subscribe to multiple Queue, Topic, Relay, and Notification Hub
service entities.

The Microsoft Azure Service Bus Queue service and the Microsoft Azure Queue storage ser-
vice are very similar to each other. They can both be used to transmit messages, and they are con-
sumed in similar ways: Queue storage is accessed via a storage account, and Service Bus Queue is

CODE LIST 8.8 CUSTOMER UI USING KNOCKOUT.JS

 1:<h2>Customer Manager</h2>
 2:<div data-bind="foreach: Customers">
 3: <div data-bind="text: Id"></div>
 4: <input data-bind="value: Name" />
 5: <input data-bind="value: Age" />
 6: <i nput type="button" data-bind="click: Update"

value="Update" />
 7:</div>
 8:<script src="~/Scripts/jquery-2.0.3.js"></script>
 9:<script src="~/Scripts/knockout-2.3.0.js"></script>
10:<script>
11: var viewModel = new pageViewModel();
12: function customerViewModel(id, name, age) {
13: this.Id = id;
14: this.Name = ko.observable(name);
15: this.Age = ko.observable(age);
16: this.Update = function () {
17: alert(this.Name());
18: };
19: }
20: function pageViewModel() {
21: this.Customers = ko.observableArray([]);
22: }
23: $(function () {
24: $.getJSON('/api/Customer', function (data) {
25: $.each(data, function (key, val) {
26: viewModel.Customers.push
27: (n ew customerViewModel(val.Id, val.Name, val.

Age));
28: });
29: ko.applyBindings(viewModel);
30: });
31: });
32:</script>

274 ◾ Zen of Cloud

accessed via a namespace; Queue storage is supported by the storage client library, and Service Bus
Queue is supported by the service bus client library. Of course, they have significant differences
as well. Service Bus Queue can handle larger message sizes, and it provides more functionalities
compared to the Queue storage. We will learn more about these features in Chapter 11.

Now, let us learn how to manage a Service Bus namespace with a brief example.

Example 8.3: Managing Service Bus Namespaces and Queues

Difficulty: *

 1. Log in to Microsoft Azure Management Portal.
 2. Click on the NEW icon on the command bar, and then select APP SERVICES→SERVICE

BUS→QUEUE→CUSTOM CREATE.
 3. On the CREATE A QUEUE dialog, enter a name for the new queue and a name for the

new namespace, and then click the next button to continue, as shown in Figure 8.16. The
wizard combines the step of creating the namespace and the step of creating the queue into
a single step. Logically, you would create a namespace first and then add service entities such
as queues into it.

 4. In the next step, accept all default settings and click on the check button to complete the
operation. This will create a new Service Bus namespace with a new queue in it.

 5. After the namespace has been created, you can use the CONNECTION INFORMATION
icon to query how to connect to this namespace, as shown in Figure 8.17.

 6. On the Access connection information dialog, you can look up connection strings you can
use to connect to a Service Bus namespace. When you create a Service Bus client, you can use
either the SAS connection string or the ACS connection string to connect to the namespace
(Figure 8.18).

 7. You can also manage your Service Bus namespaces and other entities (such as queues) in
Visual Studio. Launch Visual Studio, and then open the Server Explorer.

 8. Expand the Microsoft Azure→Service Bus node. Expand the namespace you have just
created, and you will find the new queue under the Queues node, as shown in Figure 8.19.

Figure 8.15 Customer manager.

Cloud Solution Architecture ◾ 275

 9. In addition to creating/configuring/updating queues, you can also send and receive test mes-
sages directly from Visual Studio. Right-click on the queue node, and select the Send a test
message menu to enqueue a test message in the queue, as shown in Figure 8.20.

 10. You see a confirmation dialog informing you that a string message has been added to the
queue, as shown in Figure 8.21.

 11. Similarly, you can right-click the queue again and select the Receive message menu to
dequeue the message we just put in the queue, as shown in Figure 8.22.

Figure 8.16 Create a new namespace and a queue.

Figure 8.17 Access connection information of a namespace.

276 ◾ Zen of Cloud

Figure 8.18 Service bus namespace access connection information.

Figure 8.19 Managing queues in Visual Studio.

Cloud Solution Architecture ◾ 277

8.3.4 Implementing n-Tiered Services on Microsoft Azure
Microsoft Azure cloud services provides built-in support for n-tiered architecture. When you
create a new cloud service project, you can directly add multiple roles into the project to con-
struct a multitiered system. In addition, on Microsoft Azure Management Portal, you can scale
different layers independently to optimize system throughput. Microsoft Azure also supports
automated scripts for you to automate repetitive jobs. We introduce Microsoft Azure scripting
in Chapter 17.

Figure 8.20 Sending a test message from Visual Studio.

Figure 8.21 test message has been added to the queue.

278 ◾ Zen of Cloud

We have introduced different ways of cross-layer communications in Section 4.3 and have
presented an example of direct communication in Chapter 4. Communicating through a message
queue is also a commonly used technique. In the following example, we use Microsoft Azure
Service Bus Queue service to achieve asynchronous communications between service layers.

Example 8.4: Service Bus Queue asynchronous communication: A translation service

Difficulty: ****
In this example, we create a Microsoft Azure cloud service that is made up by a Web Role and a
Worker Role. The Web Role takes English texts from users and sends them to the Worker Role to
translate them into Chinese. The Worker Role in turn uses Microsoft Translator service to perform
the translation, and sends the results back to the Web Role via another queue.

Part of the source code in this example is taken from MSDN (http://msdn.microsoft.com/en-us/
library/hh454950.aspx).

 1. Launch Visual Studio as an administrator. Create a new cloud service.
 2. Add an ASP.NET MVC 4 Web Role (using the Internet Application template) and a

Worker Role (using Worker Role with Service Bus Queue template) to the service, as shown
in Figure 8.23.

Figure 8.22 Received test message.

Figure 8.23 Creating an n-tiered cloud service.

Cloud Solution Architecture ◾ 279

 3. In the cloud service project, double click the Worker Role to open its Properties page. Switch
to the Settings tab. Then, replace the value of Microsoft.ServiceBus.ConnectionString
with the connection string to your Service Bus namespace (see step 6 in Example 8.3). Save
your changes.

 4. Open the WorkerRole.cs file in the Worker Role project to examine its code.
 5. Code List 8.9 shows the default OnStart() implementation. Lines 7–9 guide

the connection string from the Role settings. Then, lines 10 and 11 create a new
NamespaceManager instance using its static CreateFromConnectionString method.
The NamespaceManager class provides various methods for managing Service
Bus entities, such as checking if a queue exists (line 12) and creating a new queue
(line 14). Finally, in order to interact with the queue, a QueueClient instance is created
(lines 18 and 19).

 6. Code List 8.10 shows the default implementation of the Run() method. This implementation
uses an event-driven style. When a message is received and the OnMessage is triggered
(line 7), the callback, which is an anonymous method in this case, is invoked (lines 7–19).
Similar to Microsoft Azure Queue service, after you have successfully processed a message,
you are supposed to mark the message as Completed within the default time window;
otherwise, the message will reappear on the queue after the message lock expires. You do
not see the message is marked in Code List 8.10 because by default the OnMessage method
automatically marks a message as Completed once the callback returns. This behavior can
be changed by passing an OnMessageOptions instance (with AutoComplete set to false) as
the second parameter of the OnMessage method.

 7. Press F5 to launch the application. Use the Server Explorer to send a couple of test mes-
sages to the ProcessingQueue queue, which is automatically created when the Worker
Role starts.

CODE LIST 8.9 ONSTART() METHOD OF THE WORKER ROLE

 1:public override bool OnStart()
 2:{
 3: // Set the maximum number of concurrent connections
 4: ServicePointManager.DefaultConnectionLimit = 12;
 5:
 6: // Create the queue if it does not exist already
 7: string connectionString =
 8: CloudConfigurationManager.GetSetting
 9: ("Microsoft.ServiceBus.ConnectionString");
10: va r namespaceManager = NamespaceManager.

CreateFromConnectionString
11: (connectionString);
12: if (!namespaceManager.QueueExists(QueueName))
13: {
14: namespaceManager.CreateQueue(QueueName);
15: }
16:
17: // Initialize the connection to Service Bus Queue
18: Client = QueueClient.CreateFromConnectionString
19: (connectionString, QueueName);
20: return base.OnStart();
21:}

280 ◾ Zen of Cloud

 8. On the Compute Emulator UI, observe log entries recorded by the Work Role while
processing the messages, as shown in Figure 8.24.

 9. Now let us implement the translation functionality. First, add a Class Library project to the
solution. Then, add a SampleJob class to the library:

CODE LIST 8.10 RUN() METHOD OF THE WORKER ROLE

 1:public override void Run()
 2:{
 3: Trace.WriteLine("Starting processing of messages");
 4:
 5: // Initiates the message pump and callback is invoked for

each message
 6: // that is received, calling close on the client will stop

the pump.
 7: Client.OnMessage((receivedMessage) =>
 8: {
 9: try
10: {
11: // Process the message
12: Tr ace.WriteLine("Processing Service Bus message:

" +
13: re ceivedMessage.SequenceNumber.

ToString());
14: }
15: catch
16: {
17: // Handle any message processing specific

exceptions here
18: }
19: });
20:
21: CompletedEvent.WaitOne();
22:}

Figure 8.24 Log entries generated by the Worker Role while processing test messages.

Cloud Solution Architecture ◾ 281

public class SampleJob
{
 public int Id { get; set; }
 public string OriginalText { get; set; }
 public string TranslatedText { get; set; }
}

 10. In the Worker Role project, add a reference to the previous Class Library as well as a reference
to System.Web.

 11. To use Microsoft Translation Service, you first need to subscribe to it. Then, you need
to authenticate using OAuth when invoking the API. In the WorkerRole.cs file, add an
AdmAccessToken class:

using System.Runtime.Serialization;
…
[DataContract]
public class AdmAccessToken
{
 [DataMember]
 public string access_token { get; set; }
 [DataMember]
 public string token_type { get; set; }
 [DataMember]
 public string expires_in { get; set; }
 [DataMember]
 public string scope { get; set; }
}

 12. We also need to create a second queue for returning the translation results. Similar to the
ProcessingQueue, we create a ReturnQueue in this case:

public class WorkerRole : RoleEntryPoint
{
 …
 const string ReturnQueueName = "ReturnQueue";
 QueueClient ReturnClient;
 …
 public override bool OnStart()
 {
 …
 if (!namespaceManager.QueueExists(ReturnQueueName))
 {
 namespaceManager.CreateQueue(ReturnQueueName);
 }
 …
 ReturnClient = QueueClient.CreateFromConnectionString
 (connectionString, ReturnQueueName);
 …
}

282 ◾ Zen of Cloud

 13. In the Worker Role Run() method, invoke a translateText() method, which we defines in
a moment, and then enqueue the result to the ReturnQueue. Code List 8.11 shows how
this is done. First, line 10 retrieves the SampleJob instance embedded in the body of the
received BrokeredMessage instance. Then, line 11 invokes the translation method. Finally,
the updated SampleJob instance is packaged into another BrokeredMessage instance and
sent to the returning queue (line 12).

 14. Now let us look at the translateText() method. The complete code of the method is shown
in Code List 8.12. Lines 5–24 are to get the security token, and lines 26–41 are to invoke the
translation API, attaching the security token as a bearer token (line 32).

 15. In the Web Role project, add a reference to the Class Library containing the
SampleJob class.

 16. In the Web Role project, add a reference to the WindowsAzure.ServiceBus NuGet package
(see Figure 8.25). This is a typical way of consuming various Microsoft Azure services—to
add references to corresponding NuGet packages in your project and code away.

 17. Replicate the Microsoft.ServiceBus.Connection setting from the Worker Role to the
Web Role.

 18. Add a new API Controller named JobController to the Web Role. The code of creat-
ing and operating the queues is very similar to that in the Worker Role. Among the
methods, SendJob() is used to send a translation job, and GetCompletedJob() is
used to query completed jobs. Note that the GetCompletedJob() method uses peri-
odical polling instead of the event-driven mode. The complete source code is listed
in Code List 8.13.

CODE LIST 8.11 USE OF THE RETURNING QUEUE

 1:public override void Run()
 2:{
 3: …
 4: Client.OnMessage((receivedMessage) =>
 5: {
 6: try
 7: {
 8: if (receivedMessage != null)
 9: {
10: Sa mpleJob job = receivedMessage.

GetBody<SampleJob>();
11: jo b.TranslatedText = translateText(job.

OriginalText);
12: ReturnClient.Send(new BrokeredMessage(job));
13: }
14: }
15: catch
16: {
17: // Handle any message processing specific

exceptions here
18: }
19: });
20:
21: CompletedEvent.WaitOne();
22:}

Cloud Solution Architecture ◾ 283

CODE LIST 8.12 TRANSLATETEXT METHOD

 1:private string tranlateText(string text)
 2:{
 3: string clientID = "[Client ID]";
 4: string clientSecret = "[Client Secret]";
 5: string strTranslatorAccessURI =
 6: "h ttps://datamarket.accesscontrol.windows.net/v2/

OAuth2-13";
 7: string strRequestDetails =
 8: st ring.Format("grant_type=client_credentials&client_

id={0}
 9: &c lient_secret={1}&scope=http://api.

microsofttranslator.com",
10: HttpUtility.UrlEncode(clientID),
11: HttpUtility.UrlEncode(clientSecret));
12: We bRequest webRequest = WebRequest.

Create(strTranslatorAccessURI);
13: webRequest.ContentType = "application/x-www-form-urlencoded";
14: webRequest.Method = "POST";
15: by te[] bytes = System.Text.Encoding.ASCII.

GetBytes(strRequestDetails);
16: webRequest.ContentLength = bytes.Length;
17: us ing (System.IO.Stream outputStream = webRequest.

GetRequestStream())
18: {
19: outputStream.Write(bytes, 0, bytes.Length);
20: }
21: WebResponse webResponse = webRequest.GetResponse();
22: DataContractJsonSerializer serializer =
23: new DataContractJsonSerializer(typeof(AdmAccessToken));
24: AdmAccessToken token = (AdmAccessToken)serializer.ReadObject
25:
26: (webResponse.GetResponseStream());
27: string headerValue = "Bearer " + token.access_token;
28: string uri =
29: "h ttp://api.microsofttranslator.com/v2/Http.svc/

Translate?text="
30: + HttpUtility.UrlEncode(text) + "&from=en&to=zh-CHS";
31: Ht tpWebRequest request = (HttpWebRequest)WebRequest.

Create(uri);
32: request.Headers.Add("Authorization", headerValue);
33: try
34: {
35: WebResponse response = request.GetResponse();
36: using (Stream stream = response.GetResponseStream())
37: {
38: XElement elm = XElement.Load(stream);
39: var ret = elm.FirstNode.ToString();
40: return ret;

284 ◾ Zen of Cloud

 19. Replace the entire code in View\Home\Index.cshtml with the code in Code List 8.14. The
page refreshes itself every 2 s to display newly found translation results from the returning
queue (lines 11–22). When a user clicks on the Submit button, the translation task is added
to the sending queue (lines 6–10).

 20. Press F5 to launch the application. Enter the English texts to be translated, and click
the Submit button. Observe the translation results showing up on the page, as shown in
Figure 8.26.

8.4 Distributed System
In a distributed system, multiple distributed computers coordinate their work over a net-
work to jointly complete a complex task. Two key aspects of distributed systems are par-
allel computing and internode communications. Microsoft Azure provides two different
communication mechanisms: message-based integrations (more on this in Chapter 15), and
Microsoft Azure Service Bus Relay service, as shown in Figure 8.27. Relayed connections

41: }
42: }
43: catch (WebException)
44: {
45: return text;
46: }
47:}

Figure 8.25 Adding reference to WindowsAzure.ServiceBus nuGet package.

Cloud Solution Architecture ◾ 285

CODE LIST 8.13 JOBCONTROLLER

using Microsoft.ServiceBus.Messaging;
using Microsoft.WindowsAzure;
using Microsoft.ServiceBus;
…
public class JobController : ApiController
{
 const string QueueName = "ProcessingQueue";
 const string ReturnQueue = "ReturnQueue";
 QueueClient Client;
 QueueClient ReturnClient;
 Random rand = new Random();

 public JobController()
 {
 string connectionString = CloudConfigurationManager
 .GetSetting("Microsoft.ServiceBus.ConnectionString");
 var namespaceManager = NamespaceManager
 .CreateFromConnectionString(connectionString);
 if (!namespaceManager.QueueExists(QueueName))
 namespaceManager.CreateQueue(QueueName);
 if (!namespaceManager.QueueExists(ReturnQueue))
 namespaceManager.CreateQueue(ReturnQueue);
 Client = QueueClient.CreateFromConnectionString
 (connectionString, QueueName);
 ReturnClient = QueueClient.CreateFromConnectionString
 (connectionString, ReturnQueue);
 }
 [HttpGet]
 public void SendJob(string payload)
 {
 Client.Send(new BrokeredMessage(new SampleJob
 { Id = rand.Next(1, 100), OriginalText = payload }));
 }
 [HttpGet]
 public SampleJob GetCompletedJob()
 {
 var message = ReturnClient.Receive(TimeSpan.FromSeconds(3));
 if (message != null)
 {
 var ret = message.GetBody<SampleJob>();
 message.Complete();
 return ret;
 }
 else
 return null;
 }
}
…

286 ◾ Zen of Cloud

CODE LIST 8.14 USER INTERFACE

 1:E nter the text to be translated: <input id="jobText" type="text"
/>

 2:<input id="submit" type="button" value="Submit" />
 3:<div id="jobs"></div>
 4:@section Scripts{
 5: <script>
 6: $('#submit').click(function () {
 7: $.getJSON('/api/Job/SendJob?'
 8: + 'payload='
 9: + encodeURIComponent(jobText.value), null);
10: });
11: $(function () {
12: setInterval(refreshJobs, 2000);
13: });
14: function refreshJobs() {
15: $.getJSON('/api/Job/GetCompletedJob', function (json) {
16: if (json != null)
17: $('#jobs').append('Task ' + json.Id
18: + 'completed. <i>Original Text</i>:'
19: + json.OriginalText
20: + ' , <i>Translated Text</i>:' + json.

TranslatedText
21: + '
');
22: });
23: }
24: </script>
25:}

Figure 8.26 translation service running results.

Cloud Solution Architecture ◾ 287

provide highly available connectivity so that any two computers connected to the Internet can
communicate with each other.

8.4.1 Message-Based Connections
In the previous section, we implemented an n-tiered system in which roles communicate with
each other via Service Bus Queues. Because Microsoft Azure Service Bus is an SaaS that is
accessible over the Internet, it can be used as a medium to connect any two computers on
the Internet. In addition to the Queue service, Service Bus provides a Topic/Subscription
service, where a publisher can send a message to a topic, which forwards the message to all
attached subscriptions. So, the service is ideal for broadcasting messages to a group of subscrib-
ers. In addition, each subscription can apply different filters to receive messages that satisfy
certain criteria.

Example 8.5: Service Bus Topic/Subscription: A simple chat system

Difficulty: **
In this example, we create a Windows Console chat program. When the program starts, it prompts
the user to enter a self-picked user name, and then to create or join a chat room. Once in a chat
room, the user can exchange messages with all users within the same room. Each chat room is a
Service Bus Topic, which is subscribed by all the users in the same room. Messages sent to the Topic
are broadcasted to all Subscriptions.

This example also shows that you do not have to access Microsoft Azure SaaS services in a cloud
service project. You can leverage these services from any type of applications you are building.
Although in this case we are building Windows Console applications, we can still use Microsoft
Azure services to achieve our goals.

 1. Create a new Windows Console application.
 2. Add a reference to the WindowsAzure.ServiceBus NuGet package (see step 16 in

Example 8.4).
 3. First, we define a ChatText class, which represents a chat message (see Code List 8.15).

Because the messages sent to Service Bus need to be serializable, we decorate the class and its
members with the DataContract and the DataMember attributes.

Relay service Messaging

Node Node Node

Figure 8.27 Distributed systems using Microsoft Azure.

288 ◾ Zen of Cloud

 4. Next, we define a ChatRoom class to encapsulate the behaviors and properties of a
chat room. The ChatRoom class supports an event-driven programming mode. When
a new message is received, it raises a TextReceived event. The event parameter is
defined as follows:

class TextEventArgs : EventArgs
{
 public ChatText ChatText { get; private set; }
 public TextEventArgs(ChatText chatText)
 {
 ChatText = chatText;
 }
}

 5. The ChatRoom class is the core of the program. Lines 13–16 in Code List 8.16 create a
Service Bus Topic for the chat room. Note that line 14 specifies that the Topic should be
automatically removed when there are no activities for a period of time (Service Bus Queue
supports a similar feature as well). Lines 17 and 18 create a new Subscription to the Topic for
the current user. Lines 24–29 are the same event-driven programming mode that we have
seen in the previous example. This event-driven programming mode is very suitable for writ-
ing client applications.

 6. The main program is relatively easy. You may consult the comments in Code List 8.17.
 7. Press Ctrl + F5 to launch the program. When the program starts, it asks for a user name

and a chat room name (see Figure 8.28). Note that in this version because we are directly
using user inputs as the Topic name and the Subscription name, the names can only contain
English letters, numbers, and dashes.

 8. You can press Ctrl + F5 to launch multiple instances of the program, or distribute the
executable to your friends (anywhere in the world) to try out multiuser chatting, as shown in
Figure 8.29.

CODE LIST 8.15 CHATTEXT CLASS

[DataContract]
class ChatText
{
 [DataMember]
 public string User { get; set; }
 [DataMember]
 public string Text { get; set; }
 [DataMember]
 public int Color { get; set; }
 public ChatText(string user, int color, string text)
 {
 User = user;
 Text = text;
 Color = color;
 }
}

Cloud Solution Architecture ◾ 289

CODE LIST 8.16 CHATROOM CLASS

 1:class ChatRoom
 2:{
 3: public event EventHandler<TextEventArgs> TextReceived;
 4: public string Name { get; private set; }
 5: TopicClient mTopicClient;
 6: SubscriptionClient mSubscriptionClient;
 7: const string mConString = "[Service Bus Connection String]";
 8: public ChatRoom(string chatRoom, string userName)
 9: {
10: Name = chatRoom;
11: NamespaceManager nm =
12: Na mespaceManager.CreateFromConnectionString

(mConString);
13: TopicDescription desc = new TopicDescription(chatRoom);
14: desc.AutoDeleteOnIdle = TimeSpan.FromMinutes(10);
15: if (!nm.TopicExists(chatRoom))
16: nm.CreateTopic(chatRoom);
17: if (!nm.SubscriptionExists(chatRoom, userName))
18: nm.CreateSubscription(chatRoom, userName);
19: mTopicClient = TopicClient
20: .CreateFromConnectionString(mConString, chatRoom);
21: mSubscriptionClient = SubscriptionClient
22: .CreateFromConnectionString
23: (mConString, chatRoom, userName);
24: mSubscriptionClient.OnMessage((m) =>
25: {
26: var text = m.GetBody<ChatText>();
27: if (TextReceived != null)
28: TextReceived(this, new TextEventArgs(text));
29: });
30: }
31: public void Send(string user, int color, string text)
32: {
33: mTopicClient.Send(
34: ne w BrokeredMessage(new ChatText(user, color,

text)));
35: }
36: public void Close()
37: {
38: mSubscriptionClient.Close();
39: mTopicClient.Close();
40: }
41:}

290 ◾ Zen of Cloud

CODE LIST 8.17 THE MAIN PROGRAM OF THE CHAT PROGRAM

using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Messaging;
using System.Collections.Generic;
using System.Runtime.Serialization;
…
class Program
{
 static int linePos = 2;//display column of current row
 static int myColor = 1;//color index of current user
 //This variable is for conversion from int to ConsoleColor
 static Array mColors = Enum.GetValues(typeof(ConsoleColor));
 static void Main(string[] args)
 {
 Random rand = new Random();
 my Color = rand.Next(0, mColors.Length);//Randomly assign a

display color
 Console.Clear();
 Console.Write("Please Enter a User Name: ");
 string userName = Console.ReadLine();
 //Enter a new chat room name, or enter an existing name to
 //join a previously created room
 Console.Write("Please Enter a Chat Room Name: ");
 string chatRoom = Console.ReadLine();
 //Chat room UI
 Console.Clear();
 Console.Write(userName);
 Console.SetCursorPosition
 (Console.WindowWidth - chatRoom.Length, 0);
 Console.Write(chatRoom);
 Console.Write(new String('*', Console.WindowWidth));
 Console.SetCursorPosition(0, Console.WindowHeight - 4);
 Console.Write(new String('*', Console.WindowWidth));
 ChatRoom room = new ChatRoom(chatRoom, userName);
 ro om.TextReceived += room_TextReceived;//handle new message

event
 while (true)
 {
 setCursorAtBottom();
 var input = Console.ReadLine();
 if (string.IsNullOrEmpty(input))//enter empty string to

exit
 break;
 room.Send(userName, myColor, input);//send message
 }
 room.Close();//disconnect
 }

Cloud Solution Architecture ◾ 291

8.4.2 Relayed Connections
Microsoft Azure Service Bus Relay service provides a highly available service to connect any
two computers over the Internet. Relayed connections can be used to construct distributed sys-
tems as well as to provide local-to-cloud connectivity in hybrid cloud solutions. For example,
you can expose a local WCF service to the public through a Service Bus Relay endpoint, even
if your WCF service is running on a machine without public IP address, behind layers of

 static void setCursorAtBottom()
 {
 //put the cursor at the bottom of the screen for user inputs
 Console.SetCursorPosition(0, Console.WindowHeight - 3);
 Console.Write(new String(' ', Console.WindowWidth));
 Console.SetCursorPosition(0, Console.WindowHeight - 3);
 Console.Write("] ");
 }
 static void room_TextReceived(object sender, TextEventArgs e)
 {
 if (linePos >= Console.WindowHeight - 4)
 {
 // to avoid scrolling, clear chat screen and reset the

cursor
 //at the top of the screen
 for (int i = 2; i < Console.WindowHeight - 4; i++)
 {
 Console.SetCursorPosition(0, i);
 Console.Write(new string(' ', Console.WindowWidth));
 }
 linePos = 2;
 }
 //Display newly received message
 Console.SetCursorPosition(0, linePos);
 Console.ForegroundColor =
 (ConsoleColor)mColors.GetValue(e.ChatText.Color);
 Console.Write("[" + e.ChatText.User + "]:");
 Console.ForegroundColor = ConsoleColor.White;
 Console.Write(e.ChatText.Text);
 linePos++;
 setCursorAtBottom();
 }
}

Figure 8.28 Launching the chat program.

292 ◾ Zen of Cloud

firewalls, or even without a static IP address. In the following example, we build a distributed
game using Service Bus Relay service.

Example 8.6: Service Bus Relay: A WCF mastermind game

Difficulty: ***
Mastermind is one of my favorite board games when I was in elementary school. The game is a
code-breaking game played by two players, one as the code maker and the other as the code breaker.
The code maker randomly picks 4 pegs of 6 possible colors to make a code, and the code breaker
tries to crack the code within 12 attempts. Each time after the code breaker makes a guess, the
code maker provides some clues by showing key pegs based on how well the breaker’s guessed code
matches with the actual code:

 ◾ If the breaker guessed correctly in both color and position of a code peg, he gets a black
key peg.

 ◾ If the breaker guessed the color correctly but not the position of a code peg, he gets a white
key peg.

For example, if the code is “red-red-blue-yellow,” and the breaker’s guess is “red-green-blue-red,”
then the breaker gets two black pegs (one for the first red peg and one for the blue peg) and a white
peg (for the last red, which is correct in color but wrong in position).

It has been proved that the code can be decrypted within six guesses. We leave the algorithm
details for interested readers to explore by themselves. In this example, we create a WCF service that
acts as the code maker. Although the WCF service will be hosted on a local computer, any client can
access this service over the Internet, provided they can pass authentication.

 1. Create a new Windows Console application (MastermindWCF.Server).
 2. Add a reference to the WindowsAzure.ServiceBus NuGet package (see step 16 in

Example 8.4).
 3. Add a C# Class Library (MastermindWCF.Lib) project to the solution.
 4. In the Class Library project, add a reference to the System.ServiceModel assembly.

Figure 8.29 Multiuser chat.

Cloud Solution Architecture ◾ 293

 5. In the Class Library project, define an IMastermindEncoder interface, which defines
the WCF service contract. The contract contains two methods—a StartGame() method
to start a new game, and a Guess() method for the player to submit a guess and to get a
response from the server. When calling the Guess() method, the client has to provide the
same identifier it gets when it calls the StartGame() method. This design allows the server to
serve for multiple game sessions at the same time. The Guess() method returns a string with
letters “W(hite)” and “B(lack)”, representing the key pegs. The string “BBBB” indicates that
the code has been decrypted.

using System.ServiceModel;
…
namespace MastermindWCF.Lib
{
 [ServiceContract(Namespace = "urn:mm")]
 public interface IMastermindEncoder
 {
 [OperationContract]
 string StartGame();
 [OperationContract]
 string Guess(string gameId, string pattern);
 }
}

 6. Define an IMastermindEndoderChannel interface, which will facilitate channel lifecycle
management.

namespace MastermindWCF.Lib
{
 …
 public interface IMastermindEncoderChannel : IMastermindEncoder,
 IClientChannel { }
}

 7. In the MastermindWCF.Server project, add a reference to MastermindWCF.Lib, a
reference to System.ServiceModel, and a reference to the WindowsAzure.ServiceBus
NuGet package.

 8. Implement the IMastermindEncoder interface in the MastermindWCF.Server project, as
show in Code List 8.18.

 9. Modify the App.config file in the MastermindWCF.Server project. Although you can con-
figure a WCF service in code, we recommend you use the configuration file as much as pos-
sible so the service can be reconfigured if necessary at runtime without changing the code.
Code List 8.19 shows the configuration file, which defines two endpoints for the service: one
is a local address using the netTcpBinding binding, and the other is a Relay address using
the netTcpRelayBinding binding. Observe that the format of the second address is sb://
[namespace].servicebus.windows. net/mastermind. This endpoint also has an associated
behavior (sbTokenProvider), which specifies that the security mode is a shared secret (the
combination of the Service Bus account and its secret key).

294 ◾ Zen of Cloud

CODE LIST 8.18 SERVER IMPLEMENTATION

using MastermindWCF.Lib;
using System;
using System.Collections.Generic;

namespace MastermindWCF.Server
{
 public class MastermindEncoder : IMastermindEncoder
 {
 private Dictionary<string, string> mGame =
 ne w Dictionary<string, string>(); //save states for

multiple games
 private string mColors = "RGBYPO";
 private Random mRand = new Random();

 public string StartGame()
 {
 Guid id = Guid.NewGuid();
 mGame.Add(id.ToString("N"), makeAPattern());
 return id.ToString("N");
 }

 public string Guess(string gameId, string pattern)
 {
 return makeFeedback(mGame[gameId], pattern);
 }

 private string makeAPattern() //generate a random code
 {
 string ret = "";
 for (int i = 0; i < 4; i++)
 ret += mColors[mRand.Next(0, mColors.Length)];
 return ret;
 }

 private string makeFeedback(string code, string pattern)
 {
 string ret = "";
 var theCode = code.ToCharArray();
 var thePattern = pattern.ToCharArray();
 for (int i = 0; i < theCode.Length; i++)
 {
 if (theCode[i] == thePattern[i])

Cloud Solution Architecture ◾ 295

 10. Start the MastermindEncoder service in the main program:

using System.ServiceModel;

namespace MastermindWCF.Server
{
 class Program
 {
 static void Main(string[] args)
 {
 Se rviceHost host = new ServiceHost(typeof(Mastermind

Encoder));
 host.Open();
 Console.WriteLine("Press [Enter] to close the server.");
 Console.ReadLine();
 host.Close();
 }
 }
}

 {
 re t += "B"; //color and position are both

correct
 theCode[i] = 'x';
 thePattern[i] = 'x';
 }
 }
 for (int i = 0; i < theCode.Length; i++)
 {
 if (theCode[i] != 'x')
 {
 for (int j = 0; j < thePattern.Length; j++)
 {
 if (thePattern[j] == theCode[i])
 {
 ret += 'W'; //only color is correct
 thePattern[j] = 'x';
 }
 }
 }
 }
 return ret;
 }
 }
}

296 ◾ Zen of Cloud

 11. Add a new Microsoft Azure Console application named MastermindWCF.Client to the
solution. Add a reference to MastermindWCF.Lib.

 12. Add a reference to the WindowsAzure.ServiceBus NuGet package.
 13. Enter WCF client configuration in the App.config file of the client program:

CODE LIST 8.19 WCF SERVICE CONFIGURATION

<system.serviceModel>
 <services>
 <service name="MastermindWCF.Server.MastermindEncoder">
 <endpoint contract="MastermindWCF.Lib.IMastermindEncoder"
 binding="netTcpBinding"
 address="net.tcp://localhost:3456/mastermind" />
 <endpoint contract="MastermindWCF.Lib.IMastermindEncoder"
 binding="netTcpRelayBinding"
 ad dress="sb://[namespace].servicebus.windows.

net/mastermind"
 behaviorConfiguration="sbTokenProvider" />
 </service>
 </services>
 <behaviors>
 <endpointBehaviors>
 <behavior name="sbTokenProvider">
 <transportClientEndpointBehavior>
 <tokenProvider>
 <sharedSecret issuerName="[issuer, such as owner]"
 issuerSecret="[access key]" />
 </tokenProvider>
 </transportClientEndpointBehavior>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <extensions>
 …
 </extensions>
</system.serviceModel>

<system.serviceModel>
 <client>
 <e ndpoint name="Mastermind" contract="MastermindWCF.Lib.

IMastermindEncoder"
 binding="netTcpRelayBinding"
 address="sb://[namespace].servicebus.windows.net/mastermind"
 behaviorConfiguration="sbTokenProvider" />
 </client>
 <behaviors>
 <endpointBehaviors>

Cloud Solution Architecture ◾ 297

 14. Implement the client. The code is very straightforward, as you can see in Code List 8.20.
 15. Set both the server application and the client application as startup projects.
 16. Press F5 to run the applications.
 17. When the server displays Press [Enter] to close the server, indicating that it is ready, press

the Enter key on the client application to start a new game, as shown in Figure 8.30.
 18. Enter your guesses, and refine your inputs based on the server’s feedbacks. Try to guess the

code within 12 attempts, as shown in Figure 8.31.

CODE LIST 8.20 MASTERMIND CLIENT

using MastermindWCF.Lib;
using System.ServiceModel;
…
namespace MastermindWCF.Client
{
 class Program
 {
 static void Main(string[] args)
 {
 var factory = new
 Ch annelFactory<IMastermindEncoderChannel>

("Mastermind");
 Console.WriteLine("Press [Enter] to start game.");
 Console.ReadLine();
 using (var channel = factory.CreateChannel())
 {
 string game = channel.StartGame();
 int count = 1;
 bool won = false;
 while (count < 12)

 <behavior name="sbTokenProvider">
 <transportClientEndpointBehavior>
 <tokenProvider>
 <sharedSecret issuerName="[issuer, such as owner]"
 issuerSecret="[access key]" />
 </tokenProvider>
 </transportClientEndpointBehavior>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <extensions>
 …
 </extensions>
</system.serviceModel>

298 ◾ Zen of Cloud

 {
 Co nsole.Write(string.Format("Guess #{0}:",

count));
 var pattern = Console.ReadLine();
 if (string.IsNullOrEmpty(pattern))
 break;
 string feedback = channel.Guess(game, pattern);
 Co nsole.WriteLine("Server returned:" +

feedback);
 if (feedback == "BBBB")
 {
 won = true;
 break;
 }
 count++;
 }
 Console.WriteLine(won ? "You won!" : "You lost!");
 }
 Console.WriteLine("Press [Enter] to exit game.");
 Console.ReadLine();
 }
 }
}

Figure 8.30 Start a new game.

Cloud Solution Architecture ◾ 299

8.5 Summary
In this chapter, we discussed different architecture choices for designing cloud-based solutions,
including client/server, browser/server, n-tier, and distributed systems. For each of the architec-
tures, we summarized its characteristics, compared it with corresponding on-premise architec-
tures, presented implementation samples, and provided some guidance for migrating on-premise
systems to cloud. Along the way, we introduced Microsoft Azure Service Bus Queue, Topic and
Subscription, and Relay services. Microsoft Azure Service Bus is a very useful service for imple-
menting many integration patterns, which we will cover in more detail in Chapter 15.

Figure 8.31 Sample game session.

301

Chapter 9

High-Availability Design

In the first section of this book, I introduced some general concepts of high availability as
well as what Microsoft Azure provides to achieve high availability, such as Update Domain,
Fault Domain, VIP Swap, and redundancy in database services and storage services. Although
Microsoft Azure provides every possible support for high availability, service developers still
need to ensure that their services are designed for high availability. In this chapter, we will
go through some of the practical strategies, techniques, and patterns for designing highly
available services.

9.1 Availability
Availability can be viewed as the probability that a system is in a running state during a given
period of time. A more strict definition refines the time period to a point where instant availability
is measured. An easier way to understand the concept is via the following formula:

Availability

Up time

Up time Down time
=

+

As we learned in the last chapter, redundancy improves system availability. For example, when we
put two service instances with 90% of availability behind a load balancer, we can create a system
with 99% of availability, as shown in Figure 9.1.

On the other hand, when we compose the components in a layered fashion, as in most
systems, the overall system availability is lower than the least available components. This is
very important to realize, because you can only achieve desired availability when you ramp up
availabilities of ALL layers in the system. Otherwise, the layer that you miss will drag down the
system availability, negating the efforts you have put in other layers. Figure 9.2 shows that when
three components with 99% availability are composed together in layers, they can only provide
97% of availability.

302 ◾ Zen of Cloud

Because availability is achieved by redundancy, it does not come for free. To get higher
availability, you need to invest more, such as by deploying more instances. When you decide your
availability goals, one question you should ask yourself is how much downtime your customers
can tolerate without losing faith in your service. Table 9.1 shows how different levels of availability
translate into downtime per year, with FAA ranking of system availability for your reference. If
your customer would be fine with 4 days of downtime per year, it is not worth pursuing higher
availability because that would just result in extra cost without added returns.

9.2 High-Availability techniques
High availability is usually achieved by using redundancies. In addition, load-balancing and
failover strategies have significant impacts on system availability.

Instance 2 (A2 = 90%)

Instance 1 (A1 = 90%)

i=1Availability = (1 – Πn (1 –Ai)) × 100% = (1 – 0.12) × 100% = 99%

Figure 9.1 Redundancy improves availability.

Layer 1 (A1 = 99%) Layer 2 (A2 = 99%) Layer 3 (A3 = 99%)

i=1Availability = Πn Ai× 100% = (0.993) × 100% = 97%

Figure 9.2 Availability is decided by lowest available component.

table 9.1 System Availabilities

Availability (%) Manage Level Yearly Downtime FAA Ranking

90 Unmanaged 5 weeks

99 Managed 4 days ROUTINE

99.9 Well-managed 9 h ESSENTIAL

99.99 Fault-tolerant 1 h

99.999 Highly available 5 min CRITICAL

99.9999 Very highly available 30 s

99.99999 Ultra available 3 s SAFETY CRITICAL

High-Availability Design ◾ 303

9.2.1 Redundancy
The so-called redundancy is to create multiple copies of services and data in a system so that
as long as one of the copies is working, the system remains available. Microsoft Azure provides
redundancies at many different layers:

 ◾ When you create a SQL Database server, Microsoft Azure automatically maintains two hot
backups. When the main database fails, Microsoft Azure automatically fails over to the
backups to deliver continuous service.

 ◾ When you use storage services, your data are replicated twice using a locally redundant
storage (LRS) mechanism. When some of the system components (such as data disks,
servers, or server rack) fail, Microsoft Azure automatically recovers the data from backup
copies. In addition, you can opt to use geo redundant storage (GRS), which replicates your
data to a secondary data center that is hundreds of miles away from your main storage
location. In this case, even if a disaster wipes out the entire data center, you can still recover
your data from the backup location. When GRS is turned on, your data are actually saved
six times: three local copies times two storage locations.

 ◾ When you use Microsoft Azure Caching service (see Chapter 11), you can turn on the high-
availability option to create duplicated copies of your data in the cache cluster.

 ◾ Microsoft Azure Service Bus provides high availability by using redundancy in internal stor-
ages, utilizing temporary entities to buffer data when main entities are offline, and providing
paired namespaces for cross data center failovers.

9.2.2 Load Balancing
Load balancing uses multiple service instances to share the workload of the entire system. Because
the participating instances can take over each other’s work, they can be considered live backups
for each other. So, load balancing is a mechanism used not only for scaling but also for high avail-
ability. This is also the reason why many of Microsoft Azure’s SLAs require multi-instance deploy-
ments. When some of the instances fail, the overall throughput of the system will suffer, but as
long as one of the instances is still working, the system remains available. In previous chapters, we
have experienced load balancing on multiple occasions:

 ◾ Multi-instance Microsoft Azure Websites (see Section 2.4).
 ◾ Multi-instance Microsoft Azure Cloud Services (see Section 3.5.2).
 ◾ Load-Balanced Microsoft Azure Virtual Machines (see Example 7.7).

9.2.3 Failover
On a system with redundancy, failover allows transactions on failing instances to be seamlessly trans-
ferred to other healthy instances. The failover process ideally is hidden from the service consumers.
For these service consumers, the service remains available and functions correctly all the time.

Unfortunately, the seamless transfer is not always possible. In many cases, the client will notice
that something unusual is happening, such as failed transactions, timeouts, or even duplicated
transactions, and it is up to the service developer to handle these situations. Regardless, because
the automated failover process restores the system to an available state much quicker than manual
interventions, it is still a very effective way to improve system availability.

304 ◾ Zen of Cloud

As an example of failover, we will present a sample scenario that uses another Microsoft Azure
service—Traffic Manager. Traffic Manager allows service developers to route customer traffics to
different data centers based on certain policies such as round-robin, performance-based, and failover.

Example 9.1: Traffic Manager: Cross-region failover

Difficulty: **
In this example, we will learn how to use Traffic Manager to route user traffic. For example, to bet-
ter serve customers from different regions, you may want to deploy your cloud services to different
geographic regions and dynamically route users to the servers that can provide them with the best
performance. In this example, we will set up two deployments of a cloud service and exercise Traffic
Manager policies. Readers should note that because Traffic Manager uses dynamic DNS resolution
to redirect users, actual user requests do not go through Traffic Manager but directly go to the
destination service, so the overhead is minimum.

When defining a Traffic Manager policy, you can define a custom probe address, which by
default is the root folder of your service. Traffic Manager tries to access this probe address every
30 s. And if the probe returns an HTTP status code 200 within 10 s, Traffic Manager considers
the service to be healthy. Otherwise, if Traffic Manager cannot get a positive response after four
attempts, it will mark the service as offline. Because of DNS caches, a client may still be routed to
an offline service even if the service has been marked offline. The client is redirected to a healthy
instance only when DNS caches expire.

In addition to a round-robin policy and a performance-based policy, you can also design a policy
for cross-region failover. In such a policy, you specify a priority list of service instances. Traffic
Manager follows the order of the list to find the first available service instance when the service
with higher priority fails. In this example, we will create a cloud service with a web role, and we will
define a custom probe that can simulate a broken service instance. Then, we will observe how Traffic
Manager reroutes traffic when we deliberately take one instance offline.

 1. Launch Visual Studio as an administrator. Create a new cloud service with a single ASP.NET
MVC 4 Web Role (using the Internet Application template).

 2. Create a new empty API controller named HealthController under the Controllers folder.
We will define a Probe() method on the controller that can configure it as our custom probe
in Traffic Manager. The Probe() method returns either status code 200 or status code 500
based on the value of a static variable isHealthy. We also define a SetHealthState for us to
flip this flag at will. The isHealthy flag resets itself after 5 min. The complete source code of
the controller is shown in Code List 9.1.

Note: This controller is stateful, and it saves its state (isHealthy) in memory. Such a design
is not scalable. We chose this implementation for simplicity.

 3. Replace the code in Views\Home\Index.cshtml with the following code:

<h1>Health State:</h1>
<h2>
 <label id="state">Healthy</label></h2>
<input type="button" id="healthy" value="Set to Healthy" />
<input type="button" id="unhealthy" value="Set to Unhealthy" />
@section Scripts{
 <script>

High-Availability Design ◾ 305

 4. Deploy this service to two different regions. In our test, we deployed the service to
example43west.cloudapp.net (US west region) and example43east.cloudapp.net (US
east region).

 $('#healthy').click(function () {
 $. getJSON('/api/Health/SetHealthState?health=true',

null);
 $('#state').text('Healthy');
 });
 $('#unhealthy').click(function () {
 $. getJSON('/api/Health/SetHealthState?health=false',

null);
 $('#state').text('Unhealthy');
 });
 </script>
}

CODE LIST 9.1 HEALTH PROBE

public class HealthController : ApiController
{
 private static bool isHealthy = true;
 private static DateTime lastUnhealthTimestamp;
 [HttpGet]
 public HttpResponseMessage Probe()
 {
 if (isHealthy)
 return new HttpResponseMessage(HttpStatusCode.OK);
 else
 {
 if (DateTime.UtcNow - lastUnhealthTimestamp
 <= TimeSpan.FromMinutes(5))
 return new HttpResponseMessage
 (HttpStatusCode.ServiceUnavailable);
 else
 {
 isHealthy = true;
 return new HttpResponseMessage(HttpStatusCode.OK);
 }
 }
 }
 [HttpGet]
 public void SetHealthState(bool health)
 {
 isHealthy = health;
 if (!health)
 lastUnhealthTimestamp = DateTime.UtcNow;
 }
}

306 ◾ Zen of Cloud

 5. Log in to Microsoft Azure Management Portal.
 6. On the command bar, click on the NEW icon. Then select the NETWORK

SERVICES→TRAFFIC MANAGER→QUICK CREATE menu.
 7. Enter a DNS PREFIX. This will be the address you provide to your customer to access

your services. Select Failover in the LOAD-BALANCING METHOD field. Then, in the
SERVICE ENDPOINTS field, select the two service instances you have deployed in step 4.
Finally, click on the CREATE link to create the policy (Figure 9.3).

Note: The three load-balancing methods are as follows:
 − Performance. Traffic Manager periodically collects Microsoft Azure data center

performance metrics around the world. When Traffic Manager receives a request
from a client, it will route the traffic to the data center with best performance
based on the historical performance data it collects.

 − Failover. Traffic Manager periodically probes service instance health and routes
traffic to the first healthy instance.

 − Round-robin. Traffic Manager evenly distributes user requests to healthy service
instances.

 8. Switch to the CONFIGURE view of the Traffic Manager registration. Then, change the
RELATIVE PATH AND FILE NAME field to /api/Health/Probe, which is the address of
our custom probe. Also, change DNS TIME TO LIVE (TTL) to 30 s (see Figure 9.4). We
use a shorter TTL here so we can more easily observe how Traffic Manager behaves.

 9. Click the SAVE icon on the command bar to save configuration changes.
 10. Once the policy is created and activated, you can observe service statuses on the

ENDPOINTS page. As shown in Figure 9.5, both service instances are online.
 11. Open a browser and navigate to http://[DNS prefix].trafficmanager.net (in our case, the

address is http://example43.trafficmanager.net). Now, let us simulate the service instance
going down by clicking on the Set to Unhealthy button.

 12. After a couple of minutes, refresh the ENDPOINTS page, and you will observe the service
instance is offline, as shown Figure 9.6.

 13. After a couple of minutes, you will observe the instance coming back online, as shown in
Figure 9.7.

Figure 9.3 Create a new traffic Manager policy.

High-Availability Design ◾ 307

Figure 9.4 traffic Manager Configuration.

Figure 9.5 Service instance statuses.

Figure 9.6 Service instance is offline.

308 ◾ Zen of Cloud

In this section, we discussed different high-availability mechanisms that Microsoft Azure pro-
vides. In the next two sections, we will refocus on cloud service and introduce techniques to
improve cloud service availability. Of course, we cannot enumerate all possible techniques and
patterns here. Instead, we will pick only two techniques that capture some of the essential concepts
and philosophy in high-availability service design.

9.3 Load Balancing and Health Probe
As mentioned earlier, you can add multiple role instances to a load balancer to share system
workload. The work distribution algorithm is often very simple, which is the round-robin method
that we have mentioned multiple times in this book. However, the round-robin method has two
requirements on the role instances:

 ◾ Homogeneous
 Load balancer assumes that all instances have identical processing power and even work-

loads. So when distributing work, the load balancer does not need to consider the differ-
ences among the instances and simply assigns work to different instances in turn. When you
deploy a Microsoft Azure Cloud Service, all instances have the identical virtual machine
configuration, and run the same code; hence, they are homogeneous.

 ◾ Autonomous
 Autonomous means the role instances do not have dependencies on each other. In other

words, adding a new instance or removing an existing instance does not impact any other
instances. This characteristic is very important for dynamic scaling and failure recovery.
Only when the instances are autonomous, Microsoft Azure can horizontally scale instances
at any time as needed.

Although the Microsoft Azure Cloud Service design provides homogeneous and autonomous
role instances, it cannot stop you from writing codes that lead to interdependencies among role
instances. To ensure your role can be scaled correctly, you should avoid such codes.

Another aspect of load balancing is to monitor instance health. The Microsoft Azure load
balancer monitor instances status by three different mechanisms:

 ◾ The host agent running on the virtual machine host periodically sends heartbeat signals
to the WaAppAgent process (see Section 4.4.1) running on the virtual machine. If the

Figure 9.7 Service instances are back online.

High-Availability Design ◾ 309

WaAppAgent fails to respond to heartbeat signals within 10 min, the host agent will restart
the virtual machine.

 ◾ If the role instance process has thrown an exception or has exited, the role instance
is recycled.

 ◾ If the role defines a custom health probe, the probe needs to return a “ready” state when
invoked. Under the TCP, the probe needs to return ACK. Under the HTTP, the probe
needs to return status code 200. Otherwise, the instance is considered busy, and the load
balancer will not dispatch more jobs to it.

You can define custom probes on web roles, worker roles, and virtual machines. Custom probes on
web roles and worker roles are defined in the service definition (.csdef) files. Code List 9.2 shows
an HTTP-based custom probe. The relative path to the probe is Probe.aspx in this case. The load
balancer checks this path every 5 s (defined by the intervalInSeconds attribute), and the probe
has 100 s (defined by the timeoutInSeconds attribute) to provide a response. In addition, the
endpoint definition specifies that a custom probe (defined by the loadBalancerProbe attribute)
should be used.

Code List 9.3 is a simple probe implementation. The sample shows that to return a “ready”
state, the method simply exits (which results in an HTTP 200 response); otherwise, it throws an
exception (which results in an HTTP 500 response) to indicate it is busy. Of course, this probe is
not particularly useful as it randomly fails.

CODE LIST 9.2 CUSTOM PROBE

<LoadBalancerProbes>
 <LoadBalancerProbe name="MyProbe" protocol="http" port="80"
 path="Probe.aspx" intervalInSeconds="5"
timeoutInSeconds="100"/>
</LoadBalancerProbes>
…
<Endpoints>
 <InputEndpoint name="Endpoint1" protocol="http" port="80"
 loadBalancerProbe="MyProbe"/>
</Endpoints>

CODE LIST 9.3 CUSTOM PROBE IMPLEMENTATION (PROBE.ASPX)

protected void Page_Load(object sender, EventArgs e)
{
 Random rand = new Random();
 if (rand.Next(0,2) == 0)
 throw new ApplicationException("Bad instance");
}

310 ◾ Zen of Cloud

9.4 Competing Consumers
Now, let us switch gear to discuss a particular pattern that can help improve system availability—
the Competing Consumers pattern.

The Competing Consumers pattern is a very useful design pattern. It provides many desir-
able attributes such as loose coupling, dynamic load balancing, dynamic scaling, and failover. In
addition, it is an effective way to eliminate centralized components (see Section 8.2.3). In the next
chapter, you will see how your system’s availability is decided by the lowest available component.
Eliminating centralized components, which lead to poor availability, is a key step to achieving
high overall system availability.

The Competing Consumers pattern is depicted in the diagram in Figure 9.8. With this
pattern, the job generator and the job processors do not directly communicate with each other.
Instead, the job generator adds jobs to a job queue, and multiple job processors compete for
available jobs.

9.4.1 Loose Coupling
The job queue creates a loose coupling between job generators and job processors. Because there
are no direct dependencies among the components, the job creators and the job processors do not
need to be online at the same time, and they do not need to wait for each other. In addition, as
long as the message format remains stable, a component can be replaced by other implementations
without affecting other components. You can use loose coupling to construct 1-to-1, 1-to-many,
many-to-1, and many-to-many topologies among the components. Typical scenarios of loose cou-
pling include the following:

 ◾ Load balancing. You can use multiple job processors to share heavy workloads.
 ◾ Load leveling. If there are sudden spikes in the number of jobs, the job queue can serve as a

buffer to release the jobs gradually to avoid overloading the processors.
 ◾ Batch processing. Because job generation and job processing can happen independently, job

generators can add jobs to the job queue when job processors are offline. The job processors
can come online later to process all queued jobs in batches.

 ◾ System integration. When integrating components are built by different parties, a job
queue can serve as an intermediate medium that bridges different technologies and
platforms.

Job processorJob generator

Job queue

Figure 9.8 Competing Consumers pattern.

High-Availability Design ◾ 311

9.4.2 Dynamic Load Balancing
In Section 9.2, we introduced how the Microsoft Azure load-balancing mechanism uses round-
robin to evenly distribute jobs across role instances. However, if the complexity of jobs varies
greatly, it is possible that some instances get assigned with a number of complex jobs while other
instances remain idle. On the contrary, with Competing Consumers pattern, a job processor gets
a new job only when it is finished with its current job. On the one hand, a job processor will not
get overloaded as it does not get assigned more than what it can take. On the other hand, while
a job processor is busy with a complex task, other processors can go forward with other simpler
tasks so that the overall workloads, instead of number of jobs, are balanced across the instances.

9.4.3 Dynamic Scaling
Because you can add or remove job processors at any time, you can dynamically adjust system
throughput as needed. For instance, where there is a sudden spike in system load, you can deploy
a second set of role instances to drain the job queue faster. You can even have on-premise instances
that you can spin up to take some pressure off the cloud instances. Moreover, all such throughput
adjustments can be done without impacting existing instances.

9.4.4 Failover
Failover is achieved by a temporary lock mechanism. When a job processor gets a job from the job
queue, instead of removing the job from the queue directly, it places a temporary lock so the job
becomes invisible to other job processors. The job processor is given a time window to complete
the job and to mark the job as completed, which formally removes the job from the queue. If the
job processor fails to complete the task within the time window, abandons the job, or crashes with-
out marking the job as completed, the job reappears on the queue once the lock expires so that the
job can be picked up by other job processors.

Such a failover mechanism ensures that a job is processed at least once, but it does not guaran-
tee if a job is processed multiple times. For example, a job processor may have completed process-
ing a job but crashed right before it could mark the job as completed. Then, when the lock expires,
the job reappears on the queue and will be processed again.

There are different ways to deal with this situation, among which is the idempotent operation.
Idempotent operations are operations that do not have accumulative effects on system states when
invoked multiple times. For example, with an idempotent operation design, an online booking system
can avoid duplicated bookings when a user clicks on the booking button multiple times by accident.

Note: Idempotent operations can be expressed by the formula f(f(x)) = f(x).

The mechanism does not ensure strict ordering either. However, that is a general problem with
parallel job processors.

Example 9.2: Compete Consumers

Difficulty: ***
In this example, we will create a Windows Console application to demonstrate dynamic load
balancing with the Competing Consumers pattern. The example generates 1000 jobs with different
complexities. Each of the jobs takes 100 ms to 5 s to be processed. These jobs are sent to a Service

312 ◾ Zen of Cloud

Bus queue by a job generator. Four job processors listen to the queue and compete for new jobs.
Finally, the program compares the result with round-robin load balancing.

 1. Create a new Windows Console application.
 2. Add a reference to System.Configuration. We will use the ConfigurationManager class to

read the Service Bus connection string from the application’s configuration file.
 3. Add a reference to WindowsAzure.ServiceBus NuGet package.
 4. Define a Job class, which will be the job message we send to job processors. The Complexity

attribute corresponds to how much time (in milliseconds) it needs to be processed.

[DataContract]
class Job
{
 [DataMember]
 public int Id {get; set;}
 [DataMember]
 public int Complexity {get; set;}
}

 5. Then, we define another class to encapsulate the state of a job processor, including the
number of jobs it has handled (JobCount) and the accumulative processing time it has
spent (JobTime):

public class WorkerInfo
{
 public int JobCount {get; set;}
 public int JobTime {get; set;}
}

 6. Code List 9.4 shows the main method. It is a bit long but should be fairly easy to understand.
You may consult the comments in the code.

 7. Modify the Microsoft.ServiceBus.ConnectionString setting in your App.config file to
enter the connection string of your Service Bus namespace.

 8. Run the application. Figure 9.9 shows the result of one round of tests. In this test, four
job processors jointly handled 1000 jobs with a total workload of 2670 s. Through
parallelization, all the jobs were processed within 671 s. In the case of Competing
Consumers pattern, although the processors handled different numbers of jobs, the work-
loads on them were roughly the same, ranging from 664 to 671 s. On the other hand,
with round-robin, the processors get assigned to the exact same number of jobs, but there
are greater variations in the actual workloads they handle, from 607 to 718 s. This test
proves that the Competing Consumers pattern distributes the workloads more evenly
among the processors.

9.5 Case Study: High-Availability Service Bus entities
In this section, we will present a case study to show how Microsoft Azure Service Bus improves its
availability by introducing redundancies and failovers at all layers of the system.

High-Availability Design ◾ 313

CODE LIST 9.4 THE MAIN PROGRAM

class Program
{
 static void Main(string[] args)
 {
 string queueName = "DemoQueue";
 //recreate DemoQueue to ensure we have a fresh start
 NamespaceManager manager = NamespaceManager
 .Cr eateFromConnectionString(Configuration

Manager
 .Ap pSettings["Microsoft.ServiceBus.

ConnectionString"]);
 if (manager.QueueExists(queueName))
 manager.DeleteQueue(queueName);
 if (!manager.QueueExists(queueName))
 manager.CreateQueue(queueName);
 QueueClient client = QueueClient
 .Cr eateFromConnectionString(Configuration

Manager
 .Ap pSettings["Microsoft.ServiceBus.

ConnectionString"],
 queueName);
 Ra ndom rand = new Random();//to generate random processing

time
 //initilaize test jobs
 int jobCount = 1000;//number of jobs
 in t jobVariation = 5000;//processing time varies from 100ms

to 5000ms
 long jobTotalTime = 0;//accumulated processing time
 var jobs = new Job[jobCount];
 for (int i = 0; i < jobs.Length; i++)
 {
 jobs[i] = new Job
 {
 Id = i,
 Complexity = 100 + rand.Next(0, jobVariation)
 };
 jobTotalTime += jobs[i].Complexity;
 cl ient.Send(new BrokeredMessage(jobs[i])); //send the

job
 }

 int workerCount = 4; //number of job processors

 in t completedCount = 0;//accumulated number of completed jobs
 WorkerInfo[] workers = new WorkerInfo[workerCount];
 for (int i = 0; i < workers.Length; i++)
 wo rkers[i] = new WorkerInfo();//initialize processor info

314 ◾ Zen of Cloud

 Co nsole.WriteLine(string.Format("Processing {0} jobs",
jobCount));

 Co nsole.WriteLine(string.Format("Total workload: {0}ms",
jobTotalTime));

 fo r (int i = 0; i < workerCount; i++) //start process
threads

 {
 ThreadPool.QueueUserWorkItem(new WaitCallback((obj) =>
 {
 QueueClient workerClient = QueueClient
 .Cr eateFromConnectionString(Configuration

Manager
 .Ap pSettings["Microsoft.ServiceBus.

ConnectionString"],
 queueName);
 while (true)
 {
 var message = workerClient.Receive();
 if (message != null)
 {
 var job = message.GetBody<Job>();
 workers[(int)obj].JobCount++;
 workers[(int)obj].JobTime += job.Complexity;
 Th read.Sleep(job.Complexity); //simulate

processing time
 Interlocked.Increment(ref completedCount);
 message.Complete(); //mark the job as completed
 }
 }
 }), i);
 }
 while (completedCount < jobCount)
 {
 Thread.Sleep(100);
 }
 Console.WriteLine();
 Console.WriteLine("Competing Consumer Processing Time:"
 + workers.Max(worker => worker.JobTime));
 Co nsole.

WriteLine("==");
 for (int i = 0; i < workers.Length; i++)
 Co nsole.WriteLine(string.Format("Processor {0} processed

{1}
 jobs in {2}ms",
 i, workers[i].JobCount, workers[i].JobTime));
 int[] simulatedTime = new int[workerCount];
 for (int i = 0; i < jobs.Length; i++)
 {
 simulatedTime[i % workerCount] += jobs[i].Complexity;

High-Availability Design ◾ 315

9.5.1 Background
Systems do not live in vacuum. Many systems need to work with other systems to accomplish
complex, distributed operations. When we integrate different systems together, the most obvious
way is to allow these systems to directly communicate with each other. However, as the num-
ber of systems increases, we will face two problems: first, there will be many connections to be
maintained. Second, these systems are tightly coupled. For the communications to happen, they

 }
 Co nsole.

WriteLine("==");
 Console.WriteLine();
 Co nsole.WriteLine("Round Robin Processing Time:" +

simulatedTime.Max());
 Co nsole.

WriteLine("==");
 for (int i = 0; i < simulatedTime.Length; i++)
 Co nsole.WriteLine(string.Format("Processor {0} processed

{1}
 jobs in {2}ms",
 i, jobs.Length / workerCount, simulatedTime[i]));
 Co nsole.

WriteLine("==");
 Console.WriteLine("Done! ");
 }
}

Figure 9.9 Result of one test run.

316 ◾ Zen of Cloud

have to be online at the same time, and their interfaces must match up. One system changing its
interface requires all related systems to make corresponding changes as well, otherwise the com-
munication will fail.

A common approach to fix these problems is to use a broker. Instead of communicating with
many systems, a system only needs to talk to the broker and the broker will provide the necessary
features such as reliable messaging, message transforms, dynamic routing, broadcasting, and other
integration concerns.

This intermediary not only decouples the systems, but also separates integration concerns from
these systems. However, because many systems rely on this intermediary, it has to be highly avail-
able so that it does not become a single point of failure of the integrated systems. Microsoft Azure
Service Bus is such a broker system. In this case study, we will summarize existing and new Service
Bus features that enable high-availability messaging among systems.

Service Bus is built on a Microsoft Azure platform. When users subscribe to Service Bus, they get
endpoints representing the subscribed service entities, and they can use these endpoints to communi-
cate with each other. Behind each endpoint is a Service Bus entity such as a queue or a topic, and each
entity in turn uses a message broker to handle the messages, and a message store to preserve messages.
So, Microsoft Azure Service Bus relies on Microsoft Azure data storage services to preserve data; it
relies on Microsoft Azure computing power to host messaging logics; and it relies on Microsoft Azure
data center to provide continuous service. Any of these components may fail, rendering the Service
Bus unavailable. Now let us see how to address these failures at different levels.

9.5.2 Segmented Message Pipelines
Let us see a typical scenario, where a sender creates a Service Bus queue and starts to send messages
to it. The queue is one of the many queues Service Bus manages at the same time. Internally, each
queue is assigned to a message broker, who does the actual message handling. Up till today, a queue
is assigned to a single broker, which means when a broker fails, all queues assigned to the same
broker will break. With Microsoft Azure SDK 2.1, the way to work around this is to use multiple
queues, so that when one queue fails, you can still use other queues to send and receive messages.

Starting with Microsoft Azure SDK 2.2, when you create a new queue, you can specify if you
want to segment messages to multiple brokers. In this case, even if one or several assigned brokers
fail, as long as there is at least one working broker, your queue remains available.

Figure 9.10 illustrates the difference. To the left, because a queue is assigned to a single broker,
a failing broker will render all dependent queues unavailable. To the right, because the queue is
supported by multiple brokers, a failing broker does not affect the availability of the queue.

Sender Sender

Queue

Queue

Queue

Queue Queue

Queue

Queue

Queue

Queue

Queue
Broker Broker

BrokerBroker

Figure 9.10 Segmented message pipelines.

High-Availability Design ◾ 317

9.5.3 Paired Namespaces
What if the Service Bus entity itself fails? Or even worse, what happens when the whole data center
fails? This rarely happens, but Server Bus is prepared for that. To deal with such failures, you can
enable Paired Namespaces, which has been included in SDK 2.1. When using Paired Namespaces,
you set up a primary namespace, a secondary namespace, as well as a failover interval. You send
and receive messages through the primary entity in the main namespace. But, when the primary
entity fails, your messages will be forwarded to the backlog entities in the paired namespace. And
later on, when your primary entity comes back online, the messages are forwarded back to the
primary entity to continue flow through the pipeline.

And this is how the mechanism works:

 1. Under normal circumstance, you send messages to the primary entity.
 2. Service Bus runtime periodically pings your primary entity. If it cannot ping the entity, it

disables the primary entity.
 3. A random backlog entity in the secondary namespace is picked and messages are forwarded

to these backlog entities.
 4. At the same time, the sender starts to ping the primary entity to check its health.
 5. One of the senders or receivers should be running a siphon, which receives messages from

the backlog entities and sends them back to the primary entity when the primary entity is
back online.

9.5.4 Conclusion
Service Bus provides high-availability messaging by building redundancies into the system to
provide failover at different levels.

9.6 Summary
In this chapter, we focused on high-availability design. We went through some basic concepts
and techniques for high availability. We learned how Microsoft Azure provides high-availability
supports at different levels. We also learned how to use Traffic Manager to achieve cross-site
failovers. Then, we looked deeper at the load-balancing mechanism by examining custom health
probe, and two different load-balancing algorithms: round-robin and Competing Consumers.
Finally, we concluded the chapter with a case study of how Microsoft Azure Service Bus improves
its own availability.

319

Chapter 10

High-Reliability Design

The basic requirement of a software or a service is that it works as advertised, which means the
software or the service delivers the required functionalities, runs without unexpected interrup-
tions, does not destroy or lose user data, and is able to recover from failures. In this chapter, we
will first review some of the basic concepts of software availability and reliability, and then discuss
high-reliability design on Microsoft Azure.

10.1 Reliability, Availability, and Maintainability
Reliability, availability, maintainability, and security (RAMS) are key metrics in evaluating a sys-
tem, used by many software and service customers. The reliability and the maintainability directly
impact the system availability. Reliability engineering is a topic that cannot be fully covered in this
book. Instead, we will try to explain the three concepts in simple language before we move on to
some practical techniques.

10.1.1 Reliability
Reliability is the probability that a system functions correctly during any given period of time.
Generally, we can use the following simple formula:

Reliability

Failed Requests

Total Requests
= −
⎛

⎝
⎜

⎞

⎠
⎟×1 100%

Many matrices such as POFOD, ROCOF, MTBF, and MTTF can be used to reflect system
reliability. However, we will focus on mean time to restore (MTTR) and mean time to failure
(MTTF) in this book. The relationships between MTTF, MTTR, and mean time between
failures (MTBF) can be depicted in Figure 10.1. In a traditional data center, MTTR is often
very long, because both hardware and software recovery can take considerable amount of time.

320 ◾ Zen of Cloud

The long MTTR requires a long MTTF, because the running servers have to remain healthy long
enough to give the system administrators enough time to fix the broken ones. The requirement of
long MTTF increases the complexity of hardware design and cost. On cloud platforms, to reduce
the cost, the commodity hardware servers, which do not guarantee extremely high MTTFs, are
used to host cloud services. To ensure system availability, cloud platforms use a very different
strategy—instead of trying to increase MTTF, it tries to reduce MTTR. It only takes a minute
for Microsoft Azure to reset a virtual machine, and when a virtual machine or physical server fails
completely, Microsoft Azure can simply allocate a new virtual machine or physical server from
its humongous resource pool to replace the failing ones. By doing this, the MTTR is reduced to
a matter of minutes, so that even with shorter MTTF, the system availability can be maintained
at a high level.

10.1.2 Maintainability
Simply put, maintainability refers to the degree of difficulty to restore a system to its running state.
It is rather hard to quantitatively measure maintainability as the “degree of difficulty” includes
both subjective and objective aspects. The simplest way to evaluate maintainability, however, is to
measure the time needed to restore a system. As a system is unavailable to provide service when
it is being repaired, the longer the time for restoration, the greater the negative impacts it has on
system availability.

10.1.3 Relationships between Availability, Reliability, and Maintainability
System availability is largely decided by both reliability and maintainability. However, with care-
ful system design, the system can maintain a high availability level even when reliability and
maintainability degrade. For example, a bus route can use multiple buses to provide the trans-
portation service. When one of the buses fails, a backup bus can be dispatched to keep the route
running. Although it usually takes a long time to fix a bus, the built-in redundancy keeps the bus
service available. By the way, transferring passengers from the broken bus to the backup bus is a
case of failover.

In Section 1.2.2 and the last chapter of this book, we discuss several design patterns and
techniques to achieve high availability without improving system component reliability. In the
following sections of this chapter, we focus on how to reduce the probability of system fail-
ures. System reliability is affected by many aspects across the whole service lifecycle, including
requirements, architecture, coding practice, and testing. Here we will cover only a small set of
selected topics.

Available

Unavailable MTTR

MTTF

MTBF

Figure 10.1 Relationships between MttR, MttF, and MtBF.

High-Reliability Design ◾ 321

10.2 embracing Failures
On cloud, failures are not exceptions but the norm. In a sizable cloud-based solution, all kinds of
failures may occur at any time. If there is only one sentence to be remembered out of this chapter,
it would be “At any time, anything may fail; and eventually, everything will fail.” Conducting
Failure Model Effects Analysis (FMEA) of all failure scenarios is one of the best practices in reli-
able engineering. Instead of trying to prevent errors from occurring, a more effective way is to
“design for failures,” which means to prepare for various failures and build mechanisms into the
system to recover from these failures. In this section, we will first categorize failures into different
types, and then discuss some of the ways to deal with different types of failures.

10.2.1 Failures in Operation
When a system is in operation, typical error types include the following:

 ◾ Transient errors
 Transient errors are caused by some temporal conditions. One key characteristic of this type

of error is that it is rather unpredictable. They happen occasionally, and they may disappear
even if you retried the operation milliseconds later. Any calls to Microsoft Azure services can
potentially fail because of network connectivity, service throttling, and other transient states
of the platform.

 ◾ Infrastructural errors
 Cloud services run on the software and hardware infrastructure provided by Microsoft Azure.

Any of these components, such as servers, racks, power supplies, and software agents, can fail.
Microsoft Azure adopts Recover-Oriented Computing (ROC) principles and is able to auto-
matically recover from most of the failures. It also provides redundancy in all layers so that
services relying on these components will not be affected if some of these components fail.

 ◾ Service errors
 These errors are caused by software bugs. These kinds of errors can be resolved only by fix-

ing the bugs. The ease of fixing bugs and deploying a fix has significant impacts on system
maintainability, and hence availability. Modularized design, testable components, effective
tracing, and other engineering practices are proven techniques to raise the software quality;
however, elaborate discussions on these topics are beyond the scope of this book.

 ◾ Human errors
 Many disastrous accidents are actually caused by humans. Compared to computers, humans

are very unreliable, yet humans often have control of the whole system. The most effective
way to eliminate human factors is to use automation scripts. With these scripts, best prac-
tices can be captured and reliably applied by computers, which are really good at repeating
predefined jobs tirelessly and precisely.

10.2.2 Failures in State Management
From the perspective of state management, failures can be put into two broad categories:

 ◾ Data loss failures
 This type of failures destroys system states, such as losing data and breaking data integrities.

Such failures often have fatal effects on a system.

322 ◾ Zen of Cloud

 ◾ Nondata loss failures
 Such failures do not cause permanent data loss, but may cause inconsistencies across the

system. In a distributed system, temporary inconsistency is sometimes a design choice instead
of an error (see the CAP theorem). However, there is a risk for such inconsistency to convert
to data loss failures if states are reconciled incorrectly. There are many proposed solutions
to maintain data consistency in a distributed system, such as distributed transactions, the
Paxo algorithm, compensating transactions, etc.

10.2.3 Failures in System Design and Implementation
From the perspective of system design and implementation quality, errors appear in two
different forms:

 ◾ Stably recreatable failures
 This type of failures has stable recreation steps. They only occur under a specific condition,

such as specific operation steps, or under certain runtime environments.
 ◾ Not stably recreatable failures

 This type of failures is difficult to recreate. They are often related to threading
problems, complex interdependencies, accumulative errors (such as memory leak), and
scaling problems.

10.3 transient errors
As mentioned earlier, transient errors may happen at any time. Any service calls may fail, no mat-
ter how simple the call appears to be. For example, Code List 10.1 shows a typical Service Bus code
that we have used several times. This code is actually subject to the effects of transient errors. Not
only complex actions such as CreateQueue may fail because of service throttling or temporary
network conditions, but even a simple check such as QueueExists may be affected by transient
errors. When performing fault modeling, you need to ensure that transient errors are covered.

The appropriate way to handle transient errors is to retry the operation. Because the
transient errors are temporary, retrying a couple of times is very likely to solve the problem.
However, adding retrying logics around every single service call is obviously a tedious job, and
the extra retry logics will lower the readability of the source code, especially when there are
branches and loops. Readers can try to come up with a common library to handle transient
errors, or to use the Transient Fault Handling Application Block from the Microsoft Patterns
and Practices team.

Many Azure client libraries, such as Service Bus client library, have built-in retry logics. Please
consult SDK documentations for methods that provide built-in transient error handling.

CODE LIST 10.1 THE CODE TO CREATE A SERVICE BUS QUEUE

if (!namespaceManager.QueueExists("TestQueue"))
{
 namespaceManager.CreateQueue("TestQueue");
}

High-Reliability Design ◾ 323

Note: The Transient Fault Handling Application Block is an open-source library that is
free for download. See the library’s document on MSDN: http://msdn.microsoft.com/en-us/
library/hh680934(v=pandp.50).aspx for more details.

10.3.1 Transient Fault Handling Application Block
Microsoft’s Transient Fault Handling Application Block encapsulates common transient error-
handling tasks. Using the library, you can easily define and apply error detection and handling
strategies to improve code reliability without sacrificing readability. The application block provides
built-in support for most Microsoft Azure services such as SQL Database, Service Bus, Storage
services, and Cache service.

To use the application block, you need to do two things:

 ◾ Define how to detect errors. Obviously, you should not treat all exceptions as transient
errors. By defining a detection policy, you can specify which exception types can be treated
as transient errors. The Transient Fault Handling Application Block provides a set of pre-
defined policies that include common transient error exceptions thrown by different services.

 ◾ Define how to handle errors. The application block provides several built-in retry policies,
such as retry at fixed time intervals, incremental intervals, or exponential back-offs.

Now, let us learn how to use the application block with an example.

Example 10.1: Use Transient Fault Handling Application Block

Difficulty: ***
In this application, we will create a simple WPF application that sends and receives several mes-
sages using the Microsoft Azure Service Bus queue. Then, we will use the Transient Fault Handling
Application Block to handle transient errors. The exact functionality of the program is not impor-
tant. The focus is to demonstrate how to use the application block. Here we use a WPF application
to increase sample variety, and to prepare the reader for the second section of the book, where we
will look at more client-side developments:

 1. Create a new WPF application.
 2. Add a reference to WindowsAzure.ServiceBus NuGet package.
 3. Modify the MainWindow.xaml file to create a simple UI:

<Window x:Class="Example10.1"
 xm lns="http://schemas.microsoft.com/winfx/2006/xaml/

presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Ti tle="Service Bus Test" Height="350" Width="525"

FontSize="18">
 <StackPanel>
 <DockPanel>
 <Button x:Name="sendMessage" Click="sendMessage_Click_1"
 DockPanel.Dock="Right" Content="Send"/>

324 ◾ Zen of Cloud

 4. Modify MainWindow.xaml.cs to add logics to send and receive messages, as shown in
Code List 10.2.

 5. Press F5 to launch the application. Send several messages to ensure the application is
working, as shown in Figure 10.2.

 <T extBox x:Name="messageText"
HorizontalAlignment="Stretch"

 Width="Auto" />
 </DockPanel>
 <ListBox x:Name="messageList"/>
 </StackPanel>
</Window>

CODE LIST 10.2 LOGICS TO SEND AND RECEIVE MESSAGES

using Microsoft.ServiceBus.Messaging;
using System.Windows;
namespace Example10.1
{
 public partial class MainWindow : Window
 {
 const string conString = "[Service Bus Connection String]";
 const string queueName = "[Queue Name]";
 QueueClient mSender, mReceiver;

 public MainWindow()
 {
 InitializeComponent();
 mSender = QueueClient.CreateFromConnectionString
 (conString, queueName);
 mReceiver = QueueClient.CreateFromConnectionString
 (c onString, queueName, ReceiveMode.

ReceiveAndDelete);
 mReceiver.OnMessage((m) =>
 {
 messageList.Dispatcher.Invoke(() =>
 {
 messageList.Items.Add(m.GetBody<string>());
 });
 }, new OnMessageOptions { MaxConcurrentCalls = 1 });
 }

 pr ivate void sendMessage_Click_1(object sender,
RoutedEventArgs e)

 {
 mSender.Send(new BrokeredMessage(messageText.Text));
 messageText.Text = "";
 }
 }
}

High-Reliability Design ◾ 325

 6. Now let us add a reference to the Transient Fault Handling Application Block. On Manage
NuGet Packages dialog, search for topaz, then click the Install button besides Enterprise
Library 5.0—Transient Fault Handling Application Block to install the package, as
shown in Figure 10.3.

 7. Back in the MainWindow.xaml.cs file, add several namespace imports:

using Microsoft.Practices.TransientFaultHandling;
using Microsoft.Practices.EnterpriseLibrary.WindowsAzure.
TransientFaultHandling;
using Microsoft.Practices.EnterpriseLibrary.WindowsAzure
 .TransientFaultHandling.ServiceBus;

 8. Lines 3 and 4 in the Code List 10.3 define a retry policy with incremental time intervals. The
policy specifies that the function call should be tried three times, and the first retry interval is
1 s. Then the retry interval is increased by 2 s before each retry. Lines 5 and 6 use the default
error detection policy for Service Bus: ServiceBusTransientErrorDetectionStrategy
to detect common Service Bus transient errors, such as ServerBusyException,
MessagingCommunicationException, TimeoutException, etc. Lines 9–12 invoke the
method we want to call (Send() in this case) using the retry policy. As you can see, although
we used a complete retry policy, the code remains clear. Finally, we wrap everything in a

Figure 10.2 Sample test result.

Figure 10.3 Add a reference to the transient Fault Handling Application Block.

326 ◾ Zen of Cloud

try-catch block (lines 7–17) because all retries could fail, in which case we will inform the
user that the send operation has failed.

This example shows the basic usage of the application block. The application block also has other
features such as supporting asynchronous operations, and configure-driven policies, etc. You may
consult MSDN documents if you are interested to learn more.

10.4 Design for Reliability
Reliability of a system is affected by many aspects. Different systems have different requirements
for reliability. There are vast differences in terms of reliability in different projects. For example,
the fly-by-wire (FBW) controlling system of a fighter jet usually requires triple or quadruple
redundancies, with each system controlling all the mechanical surfaces independently. The con-
trolling system of a fighter jet has to be extremely reliable because any failures may lead to severe
consequences. On the other hand, the steering system of a bicycle is a single handle bar. If the
handle bar is broken, the bicycle cannot be used normally any more (“normally” because many of
us have seen that some skilled people can actually operate a bicycle just fine without the handle
bar!). Even within the same system, reliability requirements of each component differ as well.
To continue with the bicycle example, the front brake and the back brake comprise a redundant
design in the braking system—not being able to start a bicycle is bad, but not being able to stop
one is much worse.

Reliability engineering is an important discipline that deserves its place in books dedicated
to the subject, and there have been many studies and techniques developed to improve system

CODE LIST 10.3 MESSAGING LOGIC WITH RETRIES

 1:private void sendMessage_Click_1(object sender, RoutedEventArgs e)
 2:{
 3: var retryStrategy = new Incremental
 4: (3, TimeSpan.FromSeconds(1), TimeSpan.FromSeconds(2));
 5: var retryPolicy = new RetryPolicy
 6: <Se rviceBusTransientErrorDetectionStrategy

>(retryStrategy);
 7: try
 8: {
 9: retryPolicy.ExecuteAction(() =>
10: {
11: mSender.Send(new BrokeredMessage(messageText.Text));
12: });
13: }
14: catch (Exception)
15: {
16: MessageBox.Show("Failed to send message!");
17: }
18: messageText.Text = "";
19:}

High-Reliability Design ◾ 327

reliability. For instance, reliability modeling alone has hundreds of models. In this section, we pick
several topics that could be the most important and most relevant to developers.

10.4.1 Single Point of Failure
A Single Point of Failure (SPoF) is a component that brings down the whole system when it fails.
SPoFs are not only dangerous, but also tend to become performance bottlenecks. In some cases,
SPoFs can be resolved by segmenting the jobs. However, if a central component assumes to be the
only instance in the system, resolving it is rather difficult. For example, a control tower of an air-
port assumes it has total control over all the flights and runways. It is a SPoF of the airport, but we
cannot simply build more towers to resolve it, because the potential conflicts and confusions could
be disastrous. Instead, we will have to build failover mechanisms so there is always one and only
one tower running. However, in many systems, the seemingly necessary singleton components can
actually be eliminated by some creative thinking. The following is a case study of eliminating a
SPoF in a fictional scenario that is based on a real-life case.

Case Study: Eliminating a SPoF
A company provides roadside assistance to its customers. The company provides a vehicle
system that automatically notifies the dispatch center of the company to provide necessary
help, such as sending a tow truck or repair crew, calling the police, etc. The vehicle system
also provides a user interface for other requests, such as asking for directions, looking for a
restaurant or a gas station, reporting other accidents, etc. In order to provide fast responses,
the company establishes a dispatch center for each of the cities it covers.

Because it was a central dispatching system, naturally the architect of the system designed
a central dispatching service for the system. The central service receives requests from users,
classifies them into different priorities, and then distributes these requests to a group of
dispatchers. The service monitors the job queues of the dispatchers and tries to dispatch jobs
to the least busy dispatcher each time to keep a fair distribution of workload. For severe inci-
dents, a dispatcher is given 15 s to make the initial response; otherwise, the job is reassigned
to another dispatcher to ensure fast responses. If no dispatchers respond to the event within
1 min, the event bubbles up to dispatch managers.

There seemed to be nothing wrong with the design. Actually, the system worked well
on a local network. As the business grew, the company tried to consolidate its resources
by creating super dispatcher centers that will cover many cities. This allowed them to use
fewer dispatchers to serve for more customers, and to provide continuous service when
customers were traveling from city to city. The company migrated the dispatching ser-
vice to a cloud data center, and changed the original dispatcher clients to browser-based
clients. In a small-scale trail run, everything worked fine and the company was ready to
announce itself as an SaaS provider.

However, severe problems started to surface when the system was rolled out in scale. Soon
they found out that the single service instance was not able to handle the workloads from
multiple cities. The API was too chatty and the network was clogged. They tried to scale out
the service layer. But because each of the service instances assumed they had full control of

328 ◾ Zen of Cloud

10.4.2 Writing Reliable Code
Writing reliable code means writing a precise, clean, testable, and readable code. In this section,
we discuss some of the most important practices. Obviously, this is nowhere near a complete list,
and it is just a personal top-3 list. Writing a reliable code is a practice applicable not only to cloud
services, but also to other application types. However, the importance of following the practice
is amplified on cloud because a bug in a multitenant system impacts all customers instead of just
one. Although Microsoft Azure’s autorecovery mechanism can restore a failed service, frequent
interruptions reduce system availability as well as customer satisfaction.

 ◾ Clarity
 Clarity does not only mean writing a precise and readable code. Clarity also means that the

code has clearly defined behavior and explicit working conditions. Each method in the code
defines and implements a contract. The method should work correctly when contract condi-
tions are met and should not work at all otherwise. By “not work at all” is meant that the
method should not perform any operations other than throwing an exception notifying the
consumer that it has violated the contract. Consider the following method:

the whole system, and a browser client was only connected to one of the instances at a given
time, there were many cases when a service instance failed to find an idle dispatcher. In
addition, although the clients constantly called back the service to report their connection
statuses, there were still cases where an incident was assigned to an offline client. This made
customers in critical incidents very angry when their requests were not handled in time. The
company spent quite some time improving the service by allowing instances to synchronize
states and creating externalized client state repositories. But because the fixes were put into
place under great time constraint, the service became complex and buggy. Soon enough,
they found that they had to make storage highly available as the storage became the new
SPoF. After several serious outages, they had to revert to the smaller dispatch center con-
figuration to keep their business. Plenty of money and business opportunities were wasted.

Switching back to the smaller dispatch center configuration gave the team some time to
bring in a cloud consultant to help them to redesign the dispatching service. To their sur-
prise, the consultant quickly proved that they did not actually need a centralized dispatch-
ing service. By using the Competing Consumer pattern, instead of a centralized service for
dispatching jobs, each client queried for new jobs from a highly available job queue when
it became idle. It was indeed a simple and elegant solution. First, the clients remained fully
occupied without being overloaded, as they only requested for new jobs when they were able
to take on more. Second, the clients did not need to send busy signals to the server anymore;
they simply requested for new jobs when they were ready. Third, adding or removing a
dispatch client had no effect on existing clients, so the system throughout could be adjusted
at any time. Finally, by creating additional monitoring topics, the managers could monitor
the whole system in real time, further ensuring the quality of the service. Yet the code was
greatly simplified. Actually, the original service eventually evolved into an analytical service
that provided additional business intelligence and valuable insights to further improve the
service. The company eventually became a truly SaaS company selling both services and
data to consumers and third parties.

High-Reliability Design ◾ 329

int Add(int a, int b)
{
 return a + b;
}

 The contract it defines is simple: it takes two integers and returns the sum. However, what hap-
pens if you invoke the method with int.MaxValue and 1 as parameters? As an experienced
C# developer, you may expect the method to simply overflow. However, as a consumer is
calling a custom Add method instead of using the default operator, the consumer could
as well be expecting the method to throw an exception when overflow happens. So, this
contract, as simple as it is, has a hidden clause in it. As we write this method down, we are
introducing uncertainty into the system. Now, consider the following implementation:

int Add(int a, int b)
{
 return checked(a + b);
}

 This implementation turns on overflow check and throws an exception when overflow hap-
pens. This is a more explicit contract as it does not allow the consumer to assume the method
to simply overflow. Now let us see a third way of implementing the method:

int Add(int a, int b)
{
 try
 {
 return checked(a + b);
 }
 catch
 {
 return 0;
 }
}

 On the surface, this implementation is very friendly to its consumers. It does not overflow,
it does not throw an exception. It is all quiet and peaceful. However, it is indeed a very bad
implementation. It has odd behavior that few will successfully predict; it swallows excep-
tion, hiding the real cause of the potential problems; and it mixes normal conditions with
exceptional conditions.

 An important technique to ensure clarity in method behavior is to use defensive program-
ming, which means a method checks for predefined conditions and only proceeds when all
conditions are met. Let us examine another simple example shown in Code List 10.4.

 The method first checks if the prerequisite is met—the file has to exist. Then, it moves on
when the condition is met. It does not catch any exceptions because it does not handle any
exceptions. The last sentence may sound awkward but it reflects a golden rule in exception
handling—do not catch an exception unless you know exactly how to handle it.

330 ◾ Zen of Cloud

Important: Do not catch an exception unless you know exactly how to handle it. If
you catch an exception only to log the error, you should rethrow the exception after the
error is logged.

 Appropriate language is very important for drafting a clear contract. Some junior develop-
ers do not understand the importance of good naming conventions. In Code List 10.4, it is
easy to anticipate that a method with the name PrintAllLinesInFile(string filePath) will
print all lines in a file, which is given by a file path. On the contrary, if the method is named
DoAFile(string a), it gives little clue for readers to understand what the method does. When
we say the best documentation is the code itself, we do not just mean to add meaningful
comments, but also to keep the code itself precise and readable.

 ◾ Testability
 Most people will agree on the importance of software testing. However, in real-life projects,

we often encounter components that are hard to test. One obvious characteristic of these
components is that they rely on a complex context to function correctly. To test these com-
ponents, we have to establish the context with sufficient fidelity for conducting meaningful
tests. Although this is achievable by mock objects and dependency injection, such compo-
nents often reflect problems in how responsibilities are assigned to different components.
In a well-designed system, the dependencies among components are simple and clear. If
you find two components that always need to be used as a pair, then the two components
should probably be combined. Some architects prefer big components with many capa-
bilities. Others prefer to use components with the finest granularities. Both extremes have
their shortcomings. Bigger components have complex internal structures and often take
on mixed responsibilities, while smaller components have convoluted dependencies among
them. Striking a balance between granularity and clarity is what separates a great architect
from ordinary ones.

 ◾ Maintainability
 Code clarity is only one of the aspects that affect maintainability. What is even more impor-

tant is that the system architecture has to be designed to embrace changes. A great architect
should have deep insight into the product roadmap, and be prepared for future changes.

CODE LIST 10.4 A METHOD TO PRINT A TEXT FILE

void PrintAllLinesInFile(string path)
{
 if (!File.Exists(path))
 throw new FileNotFoundException("File not found!", path);
 us ing (StreamReader reader = new StreamReader(File.Open(path,

FileMode.Open)))
 {
 string line = null;
 while (!string.IsNullOrEmpty(reader.ReadLine()))
 Console.WriteLine(line);
 }
}

High-Reliability Design ◾ 331

What we often observe in many projects is the phenomenon of architecture decay: In the
early phases of a project, the architecture is solid and clear, but as the project progresses
the architecture becomes unstable and may eventually collapse. There are several reasons
that may cause architecture decay. For instance, the architecture may not be designed for
changes. Such systems are often made of large components with rigid interdependencies
among them. On the other hand, the development team may not be well trained to follow
the design. However, the most important reason is that the reasoning behind the architec-
ture is not captured and explained fully to the team. An architecture is a collection of design
decisions. Capturing the reasoning behind these decisions is far more important than saving
the system diagrams. Once the reasoning is understood and accepted by the team, the team
will naturally keep the coherence of the architecture instead of trying to work around it.

 At the same time, developers should keep an open mind to refactoring the code and avoid
being overprotective toward existing work. Refactoring is not to disapprove previous work,
but to adjust the software to improve clarity and performance. In many cases, refactoring
does not mean the previous implementation is wrong. It simply means that a newer imple-
mentation is surfacing as requirements change or as the project progresses.

10.5 Summary
System reliability is a complex topic. Different systems have different requirements for reliabil-
ity. In this chapter, we discussed a number of selected topics. First, we summarized common
terms such as availability, reliability, and maintainability. Then, we analyzed different error
types and discussed how to deal with them. Next, we discussed how to design for reliability by
presenting some general discussions as well as a case study. Finally, we demonstrated how to
write a reliable code.

333

Chapter 11

High-Performance Design

Performance is very important for a successful cloud service. Nowadays, users are very impatient.
They expect a service to be stable and responsive whenever they use it. As the bar of entering the
SaaS business is dramatically lowered by cloud platforms such as Microsoft Azure, there will be
fierce competition no matter what kind of service you are providing. For each potential customer,
you basically have one and only one chance to prove that your service is better than that of
others—the service needs to work flawlessly at the first try. So, as a service developer, you need
to make your service perform the first time, and every time. In addition, because your resource
utilization is metered and has direct link to your operational cost, the ability to serve for more
customers using fewer resources means higher margin and more competitive edges, which makes
you more successful than your competitors.

For a software system, two key techniques to improve performance are asynchronous opera-
tions and reduction of I/O operations. This chapter will focus mostly on Microsoft Azure services,
which can help you reduce I/O. General discussions of asynchronous operations and paralleliza-
tion are left out as there are many books and resources on these topics.

Microsoft Azure provides two different options to create and host distributed in-memory
cache clusters for your cloud services. First, you can use Microsoft Azure Cache Service, which is a
Microsoft Azure hosted service providing dedicated cache clusters that you can subscribe and use.
Second, you can use In-Role Cache, which is to host an in-memory cache cluster using the existing
memory of the virtual machines hosting your Role instances.

Note: At the time of writing this book, there are actually three options: the Cache Service,
In-Role Cache, and Shared Cache. However, Shared Cache is retiring.

11.1 Microsoft Azure in-Role Cache
In any software systems, I/O operations are much slower than CPU operations. Any opportunity
to reduce I/O operations, or to make I/O operations asynchronous, can greatly improve

334 ◾ Zen of Cloud

system performance. Among the I/O operations, external service calls and disk operations are
often the slowest. Microsoft Azure Cache service allows you to keep frequently used data in
memory so that you can use low-latency memory I/O to replace expensive disk I/O and external
service calls.

11.1.1 Overview
Microsoft Azure In-Role Cache allows you to use the existing memory on your virtual machines
to create and host distributed, high-performance, in-memory cache clusters. The In-Role Cache
has the following features:

 ◾ No throttling
 Because the cache cluster runs on the same virtual machines that host your Role instances,

it is dedicated to your Role instances. Your service calls are not subject to throttling, which
is common when calling SaaS services. There is also no maximum size of the cache. You can
create a cache cluster of any size as long as your virtual machines have enough memory to
support it.

 ◾ Security
 Because your Role instances have exclusive access to the cache cluster, the cached data are

visible only within the scope of your cloud service.
 ◾ Low cost

 Because the cache cluster is not an external service, you are not charged any transaction fee.
In addition, because the cache cluster utilizes the memory you have already paid for, there is
no extra cost of hosting and storing cached data.

 ◾ Scalability
 You can adjust your cache settings at any time to fine-tune the performance of the cache

cluster. When you use dedicated caching roles (see next section), you can infinitely scale out
the cluster.

 ◾ Integration with Visual Studio
 It is very easy to enable and configure caching using Visual Studio. The Microsoft Azure

Compute Emulator also provides a high-fidelity simulation of the service, making develop-
ment and diagnostics much easier.

 ◾ Support Memcache Protocol
 Microsoft Azure Cache supports both Memcache text protocol and Memcache binary

protocol.
 ◾ Rich feature set

 Microsoft Azure Cache service supports a rich set of features, which we will introduce in
Section 11.1.3. In addition, Microsoft Azure Cache service API is very similar to Microsoft
AppFabric 1.1 API on Windows Servers, simplifying application migrations.

 ◾ High performance
 Because Microsoft Azure keeps Role instances close to each other in a data center, the net-

work latency among the instances is minimum. A memory cluster hosted on the same Role
instance provides even better performance.

11.1.2 Deployment Options
You have two options to deploy an In-Role cache cluster.

High-Performance Design ◾ 335

 ◾ In-Role
 This option allocates a certain amount of memory on an existing virtual machine to be used

as the cache cluster. When you define a Web Role or a Worker Role, you can specify it to
allocate a certain amount (such as 30%) of the virtual machine memory to be used by the
cache cluster. When your service is deployed, Microsoft Azure will organize the allocated
memory into a distributed cluster that can be accessed by all Role instances within the same
cloud service. For example, let us say there is a cloud service with two Role instances run-
ning on small virtual machines, which have 1.75G memory each. The developer has speci-
fied to use 30% of memory as cache. Then the two instances give you a 1.05G cache cluster
(1.75G × 30% × 2).

 ◾ Dedicated Role
 You can also add a dedicated caching Role into your cloud service, in which case the cor-

responding virtual machines will be dedicated to host and run the cache cluster. This option
allows you to create bigger cache clusters and achieve more stable performance as the cache
cluster is not competing for resources with other Role logics you have defined on your
Worker or Web Roles.

Microsoft Azure Cache service uses a simple key-value dictionary as data structure, so the cache
operation is very simple. Now let us learn how to create and use In-Role Cache with an example.

Example 11.1: Use Microsoft Azure In-Role Cache

Difficulty: *
In this example, we create a simple cloud service with a single Web Role. We also reserve a certain
amount of memory to be used as a cache cluster.

 1. Launch Visual Studio as an administrator. Create a new cloud service with a single ASP.NET
MVC 4 Web Role (using the Empty template).

 2. Add a new empty MVC Controller named HomeController under the Controllers folder.
 3. Create a new Home folder under the Views folder. Then add a new Index.cshtml View

under the Home folder.
 4. In the cloud service project, double click on the Web Role to open its Properties page. Switch

to the Cache tab. Check the Enable Caching checkbox. Then, under the Cache Cluster
Settings section, specify Cache Size to be 30% (of the memory on the hosting virtual
machine), as shown in Figure 11.1.

 5. Save the configuration. Now, when your service is deployed, you will have a distributed
cluster at your disposal. That was easy, wasn’t it?

 6. To access the cache cluster, you will need to get a client library, which is delivered as a
Microsoft.WindowsAzure.Caching NuGet package (there are several packages with simi-
lar names, so ensure you pick the right one).

 7. The NuGet package modifies the Web.config file automatically. However, we need to edit
the file to point the client to the cache cluster, which is named after the Role it belongs to.
For example, if the name of our Web Role is MvcWebRole1 (which is default), then the
In-Role cache cluster is identified by the same name. Open the Web.config file, and modify
the identifier attribute of the dataCacheClients\dataCacheClient\autoDiscover element
to the name of your Web Role:

…
<dataCacheClients>
 <dataCacheClient name="default">

336 ◾ Zen of Cloud

 8. Save the Web.Config file.
 9. Modify the Index method of HomeController as shown in Code List 11.1. To access the

cache cluster, we first need to create a new DataCache instance (line 9). Then, we can use
its Get method to check if the cache contains an item named “LaunchTime” (line 10). If we
cannot find the item, we will record current UTC time into the cache by calling the Add
method (lines 11–15; you can also use Put method to update/insert an item). Finally, we save
the same information to ViewBag to be displayed on UI (line 16).

 10. Modify index.cshtml. We only need one line of code:

<h2>The site was launched at: @ViewBag.LaunchTime</h2>

 11. Press F5 to launch the application. You can see the timestamp when the first instance of the
Web Role is started, as shown in Figure 11.2.

 12. If you refresh the browser page, the timestamp will not change, because after the initial
writing, we are reading it back from the cache. However, if you keep the program running
for more than 10 min and refresh the page again, you will see that the timestamp actually
changes! This is because by default the items you put in the cache only live for 10 min. After
10 min, the item is removed and the controller records a new time. In the next section, we
will describe how to fix this by using Expiration Type and Time to Live settings.

In the previous example, we used the In-Role deployment option. If you want to use a dedicated
role, you can add a Cache Worker Role to your cloud service, as shown in Figure 11.3. The way to
configure and use cache clusters on dedicated roles is the same as for In-Role deployment.

 <autoDiscover isEnabled="true" identifier="MvcWebRole1" />
 …
 </dataCacheClient>
</dataCacheClients>

Figure 11.1 enabling in-Role Cache.

High-Performance Design ◾ 337

CODE LIST 11.1 MODIFIED HOMECONTROLLER

 1: using Microsoft.ApplicationServer.Caching;
 2: …
 3: namespace MvcWebRole1.Controllers
 4: {
 5: public class HomeController : Controller
 6: {
 7: public ActionResult Index()
 8: {
 9: DataCache cache = new DataCache();
10: var timestamp = cache.Get("LaunchTime");
11: if (timestamp == null)
12: {
13: timestamp = DateTime.UtcNow;
14: cache.Add("LaunchTime", timestamp);
15: }
16: ViewBag.LaunchTime = timestamp;
17: return View();
18: }
19: }
20: }

Figure 11.2 Last launch time.

Figure 11.3 Add a Cache Worker Role.

338 ◾ Zen of Cloud

11.1.3 Cache Features
Some readers may have noticed that on the caching tab in Figure 11.1, there is a Named Cache
Settings section, which is zoomed in and shown in Figure 11.4.

Each of the settings is explained as follows:

 ◾ Named caches
 You can create multiple named caches within a cache cluster. You can manage and

configure named caches separately for different purposes. For instance, you can create
a named cache for each of your customers to manage their cached data separately. By
default, when you create a new cache cluster, a named cache with the name “default”
is created for you. You can create additional named caches by clicking on the Add
Named Cache button. To access the named cache other than the default cache, you
need to use an overloaded constructor of DataCache to provide the name of the cache,
for instance:

DataCache cache = new DataCache("NamedCache1");

 ◾ High availability
 Your cached items are distributed across the instances that run the cache cluster. When an

instance is recycled, the cached items on that instance will be lost. To improve availability of
cached data, you can turn on the High Availability option to ensure each item is replicated
on two different instances. Then, when one instance crashes, you can still access the cached
data from the other instance. Of course, because data are written twice in this case, each
item takes twice the storage space to be stored.

 ◾ Notifications
 You can respond to cache cluster events, such as items being added or removed, by register-

ing callbacks. For example, the following code shows how to respond to the event when a
new item is added:

cache.AddCacheLevelCallback(DataCacheOperations.AddItem,
 (cacheName, region, key, version, operation, descriptor) =>
 {
 //a ccess event parameters such as cache name and

key here.
 });

Figure 11.4 named Cache Settings.

High-Performance Design ◾ 339

 By default, the client library polls for notifications every 5 min. To make this polling interval
smaller, you need to use a DataCacheFactory with custom DataCacheFactoryConfiguration
to create the DataCache instance. The following code changes the notification polling inter-
val to 5 s so that you can observe that the callback is called sooner (you can also do this via
configuration—see Code List 11.4).

DataCacheFactoryConfiguration configuration = new DataCache
FactoryConfiguration();

configuration.NotificationProperties =
 ne w DataCacheNotificationProperties(1000, new TimeSpan

(0, 0, 5));
DataCacheFactory factory = new DataCacheFactory(configuration);
DataCache cache = factory.GetDefaultCache();

 ◾ Eviction policy
 To keep the cache cluster running smoothly, you can instruct the caching service to remove

the least recently used (LRU) items when the available memory space reaches a low level.
You can change the Eviction policy to None to disable eviction. When eviction is disabled,
the cache may be filled up, and you may receive an exception when trying to add new items.

 ◾ Expiration types and time to live
 When you use the Add method or the Put method to add an item to the cache cluster, you

can specify a time-to-live (TTL) value that controls when the item expires. Expired items
will be automatically removed from the cache. If you do not specify a TTL, the lifetime of
the item is decided by the Expiration Type setting and the Time to Live setting on the
named cache. Expiration types include the following:

 − None: The item does not expire. It resides in the cache until it is evicted.
 − Absolute: The item expires after the TTL since it is added.
 − Sliding window: The item expires after the TTL since it is last accessed. This option

allows frequently accessed data to live longer in the cache.
 ◾ Regions and tags

 Within a named cache, you can create multiple regions to segment cached data. You can
also group cached items by attaching tags onto them. Then, you will be able to use meth-
ods such as GetObjectsByTag and GetObjectsInRegion to retrieve these items. When
using regions, you should pick smaller regions for more even distribution of items because
all cached items within the same region are saved on the same virtual machine (if High
Availability is enabled, the whole region is replicated to a second machine).

 Code List 11.2 shows an example of using regions and tags. Line 2 of the code creates a
new ImportantItems region. Then, lines 3–6 create a tag list. Line 7 adds a new item to the
new region, with the tag list attached to the item.

11.1.4 Concurrency Modes
Microsoft Azure Cache service supports both optimistic concurrency and pessimistic concurrency.

 ◾ Optimistic concurrency
 Optimistic concurrency detects conflicts by checking item versions. For example,

Figure 11.5 shows how an item is updated by multiple clients. The initial version of the

340 ◾ Zen of Cloud

item is v1. Then, two clients read and update the time at the same time. One of the clients
updates the item from v1 to v2, and successfully writes v2 back to the cache. At the same
time, the other client updates the item from v1 to v2*. Then, when it tries to write v2* back
to the cache, the caching service detects that the latest version of the item has been updated
to v2, which differs from the version the client originally read (v1). Hence, the update from
the second client is rejected.

 ◾ Pessimistic concurrency
 Pessimistic concurrency avoids conflicts by placing exclusive locks on items. A client places

a lock on the item it needs to update, and it unlocks the item when the update is done.
A locked item is inaccessible by other clients, and it will not expire either (but it could
expire right after it has been unlocked). Code List 11.3 shows an example of pessimistic
concurrency. Line 4 places a 20 s lock on the item to be updated, and line 6 updates and
unlocks the item.

CODE LIST 11.2 USE REGIONS AND TAGS

1: DataCache cache = new DataCache();
2: cache.CreateRegion("ImportantItems");
3: List<DataCacheTag> tags = new List<DataCacheTag>()
4: {
5: new DataCacheTag("aTag")
6: };
7: cache.Put("key1", "value1", tags, "ImportantItems");

CODE LIST 11.3 PESSIMISTIC CONCURRENCY

1: DataCache cache = new DataCache();
2: …
3: DataCacheLockHandle lockHandle;
4: va r item = cache.GetAndLock("akey", TimeSpan.FromSeconds(20), out

lockHandle);
5: //update item
6: cache.PutAndUnlock("akey", item, lockHandle);

v1

v1

v1 v2

v2

v2*

Figure 11.5 optimistic concurrency.

High-Performance Design ◾ 341

11.1.5 Local Cache
When a client requests a cached item, the caching service needs to first determine the virtual
machine on which the item is located. Then, it reads the item from the corresponding machine and
sends the item back to the requesting client. This is a multistep operation with potentially multiple
network transportations involved. To further improve the performance, the client can enable local
cache, which uses the local memory used by the client process. Obviously, you can get the best
performance with local cache (submillisecond access time).

When local cache is used, the data in the local cache need to be synced with the data in the
cache cluster. You can specify a fixed interval to refresh your local cache. You can also refresh
your local cache when certain events are triggered. When you use the second method, you also
need to specify how frequently the client should poll for events (like what we have done in the
Notifications example). In addition, you can specify item TTL in the local cache. When the item
expires in the local cache, it needs to be retrieved again from the cache cluster when it is accessed
again. Finally, when the number of items in the local cache reaches a certain threshold, the local
cache will be automatically refreshed.

Code List 11.4 shows an example of how the local cache is configured. This configuration
specifies that the local cache is refreshed based on cache cluster events (NotificationBased). The
maximum item count is 100,000 (objectCount). The item TTL is 300 s (ttlValue). The client
should poll for events every 60 s (pollInterval).

11.1.6 Session State
Stateless service design is an important way to design scalable services. If a service is statefull, all
requests from the same user session have to be handled by the same service instance. Here is
a simple example: An online shopping service runs on two servers. When a user accesses the
service, he or she is randomly directed to one of the servers—let us say server 1 in this case
(step 1 in Figure 11.6). Then, the user requests to add an item, item 1, into the shopping cart.
Server 1 detects that it does not have a shopping cart for the user yet, so it creates one and puts
the item 1 into the cart (step 2 in Figure 11.6). The user continues to shop, and tries to add
another item, item 2, to the cart. This request happens to be routed to server 2 in this case
(step 3 in Figure 11.6). Similarly, server 2 finds out that it does not have a cart for the user yet,
so it creates a new cart and puts item 2 into the cart (step 4 in Figure 11.6). Now, the user has
two instances of shopping carts with different contents on the two servers. When the user tries

CODE LIST 11.4 CONFIGURING LOCAL CACHE

<dataCacheClients>
 <dataCacheClient name="default">
 <autoDiscover isEnabled="true" identifier="MvcWebRole1" />
 <localCache isEnabled="true" sync="NotificationBased"
 objectCount="100000" ttlValue="300" />
 <clientNotification pollInterval="60"/>
 </dataCacheClient>
</dataCacheClients>

342 ◾ Zen of Cloud

to access the shopping cart again (step 5 in Figure 11.6), he or she might encounter either of
the two states, and neither is correct.

There are two basic ways to solve this problem. The first is to use sticky sessions, which means
that all requests from the same user session are handled by the same server instance. Although
you can achieve sticky sessions using Application Request Routing (ARR) on Microsoft Azure, a
better way is to externalize session states, as shown in Figure 11.7.

Microsoft Azure Cache service provides a built-in Session State Provider, which can be used by
your ASP.NET applications to save session states to a cache cluster. Now, let us learn how to use
this state provider with an example.

Client Server 1 Server 2

5

1

2 4

3

Item 2
Item 1

Figure 11.6 State management and load balancing.

Client Server 1 Server 2 State store

5

1

3
4

2

Item 2Item 1

Figure 11.7 externalized state.

High-Performance Design ◾ 343

Example 11.2: Use external Session State Provider

Difficulty: **
In this example, we create a simple online shopping application. First, we use a local state to
demonstrate the problem shown in Figure 11.6, and then, we use a cache-based Session State
Provider to solve the problem.

 1. Launch Visual Studio as an administrator. Create a new cloud service with a single ASP.NET
MVC 4 Web Role (using the Internet Application template).

 2. Modify the HomeController to add simple online shopping logics. Line 3 in Code List 11.5
turns off ASP.NET caching for the convenience of testing. Lines 6–11 indicate the modified
Index method. If the passed-in item parameter is not null, the method appends the item to a
string list and then saves the string list to a session variable named “cart.” Finally, the method
returns existing items as a string list to UI (line 10).

 3. Modify View\Home\Index.cshtml as shown in Code List 11.6. Line 1 declares that the
business model to be bound to UI is a list of strings. Lines 2–8 comprise the list of available

CODE LIST 11.5 HOMECONTROLLER

 1: namespace MvcWebRole1.Controllers
 2:{
 3: [OutputCache(NoStore = true, Duration = 0)]
 4: public class HomeController : Controller
 5: {
 6: public ActionResult Index(string item)
 7: {
 8: if (!string.IsNullOrEmpty(item))
 9: addItem(item);
10: return View(getItems());
11: }
12: private void addItem(string item)
13: {
14: if (Session["cart"] != null)
15: {
16: List<string> items = getItems();
17: items.Add(item);
18: Session["cart"] = items;
19: }
20: else
21: Session["cart"] = new List<string> { item };
22: }
23: private List<string> getItems()
24: {
25: if (Session["cart"] != null)
26: {
27: return (List<string>)Session["cart"];
28: }
29: else
30: return new List<string>();
31: }
32: }
33: }

344 ◾ Zen of Cloud

merchandise. Line 9 renders the purchase button, which triggers the JavaScript function in
lines 21–30 to add the selected item to the shopping cart. The shopping cart is displayed in
lines 11–17.

 4. Modify the Web Role property to increase the instance count to 2.
 5. Press F5 to launch the application. Randomly “purchase” some merchandise, as shown in

Figure 11.8.
 6. As you purchase more items, the contents in your shopping cart may suddenly change. This

is because requests are sent to different service instances, which hold different copies of the
shopping cart in their memory.

 7. Stop the application.
 8. Modify the Web Role property to enable caching and allocate 30% of the virtual machine

memory as a cache cluster.
 9. Save the settings.

CODE LIST 11.6 ONLINE SHOPPING UI

 1: @model List<string>
 2: <h2>Please choose the merchandise you want to purchase:</h2>
 3: <select id="items">
 4: <option value="Xbox 360">Xbox 360</option>
 5: <option value="Xbox One">Xbox One</option>
 6: <option value="PlayStation">PlayStation</option>
 7: <option value="Wii">Wii</option>
 8: </select>
 9: <input type="button" value="Purchase" id="purchase" />

10:

11: <h2>Your shopping cart:</h2>
12: <div id="shoppingcart">
13: @foreach (var item in Model)
14: {
15: <s pan style="font-size: 18px; margin: 5px;">[@item]</

span>
16: }
17: </div>
18:
19: @section Scripts{
20: <script>
21: $('#purchase').click(function () {
22: $.ajax(
23: {
24: ur l: '?item=' + encodeURIComponent(items.

value),
25: type: 'GET',
26: success: function (result) {
27: window.location = "/";
28: }
29: }
30:);
31: });
32: </script>
33:}

High-Performance Design ◾ 345

 10. In the Web Role project, add a reference to the Microsoft.WindowsAzure.Caching
NuGet package.

 11. Modify web.config to enter the Web Role name as the cache cluster identifier
(see Example 11.1).

 12. The NuGet package has already added a cache-based Session State Provider to the web.
config file as comments. Uncomment the <sessionState> element and then save the web.
config file.

<!-- Microsoft Azure Caching session state provider -->
<se ssionState mode="Custom" customProvider="AFCacheSessionState

Provider">
 <providers>
 <add name="AFCacheSessionStateProvider"
 type="Microsoft.Web.DistributedCache
 .DistributedCacheSessionStateStoreProvider,
 Microsoft.Web.DistributedCache"
 cacheName="default"
 dataCacheClientName="default"
 applicationName="AFCacheSessionState"/>
 </providers>
</sessionState>

 13. Run the application again. This time, the shopping cart state is stable.
 14. [Optional] To ensure high availability of session data, turn on the High Availability option

of the cache.

11.2 Microsoft Azure Cache Service
Microsoft Azure Cache service is an SaaS provided by Microsoft Azure. You can create and man-
age high-throughput, low-latency, dedicated cache clusters to make your services more responsive.

Figure 11.8 online shopping program.

346 ◾ Zen of Cloud

11.2.1 Overview
Microsoft Azure Cache Service allows you to create high-performance cache clusters for your
Microsoft Azure Websites, Web Roles, Worker Roles, and Virtual Machines. At the time of writ-
ing this book, the service is in preview and provides the following three different cluster options:

 ◾ Basic: Shared cache clusters in sizes from 128 MB to 1 GB
 ◾ Standard: Dedicated cache clusters in sizes from 1 GB to 10 GB
 ◾ Premium: Dedicated cache clusters in sizes from 5 GB to 150 GB

11.2.2 Cache Service versus In-Role Cache
Microsoft Azure Cache Service and In-Role Cache provide similar functionalities and follow the
same programming model. Because there are no quotas or throttling in either option, you do not
need to consider different usage patterns when choosing between the two options. However, they
are different in several aspects:

 ◾ Hosted versus self-managed
 Microsoft Azure Cache clusters are hosted by Microsoft Azure, while In-Role clusters are

hosted by your service Roles. Microsoft Azure Cache clusters can be deployed and scaled
independently from your service instances, while In-Role clusters scale together with your
Roles. Microsoft Azure Cache Service ensures high availability of cache clusters it provides,
while you have to manage the availability of In-Role clusters yourself, such as by using mul-
tiple instances and enabling high-availability options.

 ◾ Public versus private
 Microsoft Azure Cache clusters are publicly accessible by authenticated users, while

In-Role clusters are only accessible within the hosting cloud service. Multiple cloud services
or other applications can share the same Microsoft Azure Cache cluster, enabling more
collaboration scenarios.

11.2.3 Managing Cache Clusters on Microsoft Azure Management Portal
You can manage your cache clusters easily on Microsoft Azure Management Portal. To create
a new cluster, simply click on the NEW icon on the command bar, and then select DATA
SERVICES→CACHE→QUICK CREATE to create a new cluster. Pick endpoint name, region,
cache offering, as well as how much memory you actually plan to use, and then click the check
icon to create the cluster, as shown in Figure 11.9.

Once the cluster is created, you can configure it and monitor its status on the portal. For
instance, you can get the cluster’s access key by clicking on the MANAGE KEYS icon on the
command bar. Then, you should enter the key to your configuration file, as shown in the following
example. Because the cache cluster is publicly accessible, you have to enable the securityProperties
element and provide your authentication key. In addition, note that the identifier of the cluster is
the full endpoint URL instead of a Role name.

<dataCacheClients>
 <dataCacheClient name="default">

High-Performance Design ◾ 347

11.2.4 Memcache Support
Both Microsoft Azure Cache Service and In-Role cache support Memcache protocol. You
can enable Memcache support in two different ways: by using a server gateway or a client-
side shim. Both of them translate between the Memcache protocol and the proprietary pro-
tocol used by Microsoft Azure caching services. At the time of writing this book, the server
gateway has not yet been enabled. You will need to install the client shim for your Memcache
clients. The shim is delivered as a NuGet package (Microsoft Azure Caching Memcache
Shim). Once installed, it creates a local service on your hosting virtual machine that exposes a
Memcache-compatible endpoint (with default address of 127.0.0.1:11211) that your Memcache
client can connect to.

Note: The author has created a complete walkthrough of how to use Microsoft Azure Cache
to save Java Servlet session states running on a Tomcat application server. You can find this
two-part walkthrough on the following blog:
Part 1: http://haishibai.blogspot.com/2013/09/use-tomcat-with-windows-azure-caching.
html.
Part 2: http://haishibai.blogspot.com/2013/09/use-tomcat-with-windows-azure-caching_3.
html.

 <a utoDiscover isEnabled="true" identifier="mycache.cache.windows.
net" />

 <securityProperties mode="Message" sslEnabled="false">
 <messageSecurity authorizationInfo="[Authentication Key]" />
 </securityProperties>-->
 </dataCacheClient>
</dataCacheClients>

Figure 11.9 Create a new cache cluster.

348 ◾ Zen of Cloud

11.2.5 Future of Azure Cache
At the time when this book is being written, Azure Cache Service is getting ready for the next iter-
ation. A new caching service based on Redis will be provided. Microsoft Azure automates cache
hosting for you, and you access the cache cluster just as accessing any other Redis cache clusters.
Redis provides many desired features such as data persistence and high-level data structures.
A detailed introduction of Redis is out of the scope of this book.

11.3 Microsoft Azure CDn
Microsoft Azure Content Delivery Network (CDN) is another SaaS to help you improve your
service performance. It caches your website contents on strategically located cache nodes around
the global to speed up delivery of the contents to your customers.

CDN improves your system performance in two different ways. First, because CDN can serve
up contents from its cache nodes that are closer to the final users, it can provide better response time
compared to the case when contents are directly served from your application servers. For example,
your service may have been deployed in the US West data center. When a user from the east coast
tries to access the site, many of the contents, such as JavaScript files, images, styles, and static pages,
can be delivered directed by the CDN nodes on the east coast instead of being retrieved from the
west coast servers. Second, CDN can also take some workload off your application servers. Because
users can request not only static contents, but also cached dynamic page outputs from the CDN
nodes, many requests can be satisfied by the CDN nodes instead of your application servers.

Example 11.3: Use CDN to distribute contents in your BLOB storage

Difficulty: **
In this example, we enable CDN for one of our Microsoft Azure Storage accounts. We assume you
have already created a storage account with a BLOB container, which holds a number of pictures.
See Section 6.3 for details on how to use BLOB storage service.

 1. Log in to Microsoft Azure Management Portal.
 2. Click the NEW icon on the command bar. Then, select APP SERVICES→CDN→QUICK

CREATE. In the ORIGIN DOMAIN field, you can select a storage account endpoint to
cache contents from your storage account, or cloud services to cache static contents and
page outputs from your cloud services. Here we will pick a storage account. Click on the
CREATE link to create the CDN endpoint (Figure 11.10).

Figure 11.10 Creating a new CDn endpoint.

High-Performance Design ◾ 349

 3. Once the CDN endpoint is created, you can observe its endpoint URL on the portal. Now,
you can use URL http://[CDN endpoint]/[BLOB container]/[BLOB] to access blobs in
your BLOB container (it may take several minutes before the contents can be accessed by the
CDN endpoint) (Figure 11.11).

As mentioned in the previous example, in addition to caching for storage accounts, you can use
CDN to cache cloud service contents and outputs. For example, let us assume you have a cloud
service named myservice, whose endpoint is http://myservice.cloudapp.net/. You have created
a CDN endpoint for this service, with the address http://somevalue.vo.msecnd.net/. Then, all
files under your cloud service are accessible by replacing the host in their URLs with the CDN
host name. For instance, a script file under your cloud service root folder, scripts/myscript.js,
can be accessed by the address http://somevalue.vo.msecnd.net/scripts/myscript.js. An ASP.NET
file, pages/mypage.aspx, can be accessed by the address http://somevalue.vo.msecnd.net/pages/
mypage.aspx. Note that in this case, the user is not invoking the page, but is accessing cached
output from the caching node. Furthermore, you can enable caching by query strings (you can
enable this option by clicking on the ENABLE QUERY STRING button on the command bar of
the cache’s general page). Once caching by query string is enabled, page outputs based on different
query string parameters are saved separately. For example, pages/mypage.aspx?parm=value1 and
pages/mypage.aspx?parm=value2 correspond to different cached contents.

Finally, you can define custom domains for your CDN endpoints to provide friendlier addresses
to your customers.

11.4 Asynchronous operations and Parallel operations
In addition to reducing I/O operations and using cache, asynchronous and parallel operations
are also important techniques to improve system performance. Asynchronous operations separate
complex tasks from UI to keep UI responsive. Parallel operations increase system throughput by
splitting complex tasks into smaller tasks that can be executed in parallel by multiple threads,
processes, or servers.

As mentioned at the beginning of this chapter, we will not be able to cover asynchronous oper-
ations and parallel operations in detail in this book. The following is a brief summary of different
techniques you can apply at different levels.

 ◾ .NET multithreading
 Under .NET environment, you can use Thread type to explicitly manage threads. You can

also use ThreadPool type to queue work items into a managed thread pool. You can use
methods such as Parallel.For to convert a liner loop to a parallel loop. You can use Task
Parallel Library (TPL) to achieve parallelization. Starting with .NET 4.5, you can also use
keywords such as async and await to implement asynchronous methods. You may refer to
related C# and CLR documentations for further details.

Figure 11.11 CDn URL on the portal.

350 ◾ Zen of Cloud

 ◾ ASP.NET asynchronous controllers
 You can use the AsyncController type to implement asynchronous controllers under ASP.

NET MVC. An asynchronous controller offloads the handling of a web request to a separate
thread so that the web server is not blocked by lengthy requests.

 A web server maintains a thread pool. When a request arrives, the web server retrieves
one thread from the pool to handle the request, and releases the thread back to the pool only
when the request has been handled. Because there are a limited number of threads in the
thread pool, when the server is busy with many complex requests, the thread pool might be
drained. This phenomenon is called Thread Starvation. When Thread Starvation happens,
the server will put new requests into a queue. When the queue is filled up, the server will
start to reject new queries by returning a Server Busy (503) status code.

 Asynchronous controllers use threads differently. When a new request arrives, the web
server acquires a thread from the thread pool as usual. But the thread is immediately
returned to the thread pool once an asynchronous operation is started. When the asynchro-
nous operation is completed, the web server acquires another thread from the thread pool
(which could be different from the original thread) to return the final response.

 ◾ Multiple service entities and multiple subscriptions
 We have learned that we can scale out our cloud service to share system workload using

multiple instances. However, our services often rely on other external services such as storage
services and Service Bus. Microsoft Azure imposes quotas and throttling limits on most of
these services. When a single service entity, such as a single Table or a single Queue, cannot
provide sufficient throughput, you can segment your workload across multiple service entities
or even multiple subscriptions to gain additional throughputs. Using multiple subscriptions
can also facilitate billing to different customers. You can group resources required by a single
customer to a dedicated subscription so the cost can be separately calculated and monitored.

 ◾ Service Bus best practices
 While introducing Microsoft Azure Table storage, we discussed how to use batched opera-

tions on Table storage service to improve performance and to reduce transactional costs.
Service Bus also supports batched processing of messages for similar purposes. In addi-
tion, you can use techniques such as prefetching and asynchronous send/receive to further
improve performance. For different scenarios, you may want to pick and combine several
different techniques to get the best performance. For a complete guide of Service Bus best
practices for performance, you may consult the MSDN document: http://msdn.microsoft.
com/en-us/library/windowsazure/hh528527.aspx.

11.5 Summary
In this chapter, we discussed several different aspects to improve system performance: reduce I/O
operations, improve I/O speed, and use asynchronous operations and parallelization. The chapter
focused on Microsoft Azure Cache service and Microsoft Azure CDN. It also covered some of the
asynchronous techniques briefly.

351

Chapter 12

Claim-Based Architecture

Authentication and authorization are fundamental capabilities needed by most systems, especially
by cloud-based systems. The Internet is a hostile environment, with many hackers and ill-purposed
introducers wandering around like sharks looking for victims. In terms of figuring out ways to
attack, they are very creative and determined. Unfortunately, to create an efficient, reliable, and
easy-to-use authentication and authorization system requires deep knowledge on network security
and rich experience in antihacking techniques. Obviously, this is beyond the capability of most
cloud service developers. Then, what is the solution?

When you need to lock a door, do you make a lock yourself, or do you buy a lock from a
store? I believe most people will choose the latter for obvious reasons. First, making a reliable
lock requires specialized knowledge, materials, and tools. Moreover, the time investment to
make a lock is simply unacceptable to most of us. Second, the quality of the homemade lock
is not guaranteed. Is it strong enough? Is it easy to be picked? Is it durable? To answer any of
these questions with high assurance is not a simple matter. The lock manufacturers, on the other
hand, have perfected the manufacturing processes over years to produce high-quality locks.
These locks have passed rigid tests before they are released to the market, and they are battle-
tested in the field. So, buying a lock is obviously a smart choice. Similarly, to enable authentica-
tion and authorization on a system, instead of spending large amounts of time and money to
design and implement a customized system without high-quality assurance, a smart way is to
“outsource” authentication and authorization to a trusted party. This is the fundamental idea of
claim-based architecture.

Note: About Absolutely Secure Systems
During discussions with customers, a question sometimes comes up asking if claim-based
architecture is absolutely secure—of course not. Just like a lock can be picked, any secu-
rity system can potentially be compromised. Why? This is because no matter what kind
of protection we put around a system, we still need to make the system accessible. This
access mechanism causes unavoidable vulnerability. This is just like making a maze. The
maze can be very complex, but there is always a path that allows you to navigate through

352 ◾ Zen of Cloud

12.1 Claim-Based Authentication and Authorization
Before we study the architecture, let us review some of the basic concepts:

 ◾ User and attributes
 A user refers to an entity, such as a human user or a program, which consumes a service.

A user commonly has one or more associated attributes, such as user name, email address,
and phone numbers.

 ◾ Claim
 A claim is an assertion made on an attribute of an entity. For example, “This is Mr. Smith”

is an assertion made on the last name attribute of a person. Or, more formally, the assertion
states that the last name attribute of the person (entity) has the value “Smith.” Any party can
make claims. For instance, when I introduce myself to you, I would say, “I’m Haishi”—this
is me claiming that my first name attribute is “Haishi.” On the other hand, the name printed
on my ID card is a claim made by a third-party (such as the state office) about me.

 ◾ Security token
 A security token is a collection of claims. A security token is often digitally signed and

encrypted to ensure its integrity and authenticity.
 ◾ Service provider/relying party

 Service provider (SP) refers to the service to be accessed. Under the claim-based architec-
ture, an SP is often called a relying party (RP), because it relies on a third-party to provide
authentication.

 ◾ Identity provider
 An identity provider (IdP) provides the service of authenticating users and issuing security

tokens. An SP relies on trusted IdPs to authenticate users. Then, it authorizes or denies user
access requests based on the claims, which are contained in the security token issued by a
selected IdP. There are several commonly used standard protocols that enable SPs and IdPs
to interact with each other, including ws-Federation, SAML, and Open ID Connect. In this
book, we focus on ws-Federation.

 ◾ Trust
 Trust refers to the trust relationship between SPs and IdPs. An SP can trust multiple IdPs;

and an IdP can trust multiple SPs. The trust relationship has to be mutual. All trusted

the maze. As long as this path exists, the maze is solvable. To make the system absolutely
secure, the system has to be inaccessible. However, an inaccessible system is useless. For
instance, you can seal a server in concrete and launch it to the Moon, in which case we
may assume the system is absolutely secure (if no aliens capture it!), but it becomes com-
pletely useless as well.

The architecture that we introduce in this chapter is the result of tens of years of col-
lective experience and effort. The level of security and efficiency it provides is beyond the
reach of most individual cloud service developers. Over the years, claim-based authenti-
cation and authorization have been proven to be effective and have been widely adopted
by many large systems, such as Microsoft Office 365 and Microsoft Azure Management
Portal itself.

Claim-Based Architecture ◾ 353

parties together form a circle of trust. Within a circle of trust, SPs can provide users the
single sign-on (SSO) experience, which means a user only needs to log in once to gain access
to all trusted services within the circle.

 ◾ Authentication
 Authentication is the process of verifying user identity. The authentication process usually

requires the user to provide certain proofs, such as a secret key, a digital certificate, or an
issued security token, to prove that he or she is the legit entity whose attributes can be
released to a trusted SP. Some IdPs require users to provide multiple proofs. This is the
so-called multifactor authentication process. On the contrary, if a service does not require
authentication, we say this service allows anonymous access.

 ◾ Authorization
 Authorization confirms if an authenticated user has access to certain functionalities

(or resources). Authorization decisions are often made based on user attributes. For
example, some administrative pages of a website may require a user’s role attribute to be
“Administrator.”

Authentication and authorization are two related but different concepts. Authentication
answers the question “Who are you?” and authorization answers the question “What are you
allowed to do?”

Now with the basic concepts clarified, we can move on to study the basic process of claim-
based authentication and authorization.

12.1.1 Basic Authentication and Authorization Process
The claim-based authentication and authorization process involves three parties: the user, the SP
(or relying party), and the IdP. The SP outsources authentication to the IdP and authorizes user
access based on the claims issued by the IdP. The entire workflow is shown in Figure 12.1.

User Identity provider Service provider

Please authenticate with my trusted IdP

Request access

Authenticate...

Security token

Request access

5 Verify token

Grant access

1

2

4

3

6

Figure 12.1 Claim-based authentication and authorization.

354 ◾ Zen of Cloud

 1. A user requests access to a resource (such as a web page) provided by an SP.
 2. The SP detects that the user has not been authenticated. It redirects the user to a trusted IdP

for authentication.
 3. The user provides the required proofs to the IdP to complete the authentication process.

Once the user is authenticated, the IdP packages requested user attributes as claims in a
security token, and returns the token to the user.

 4. The user requests the resource again and attaches the security token to his or her request.
 5. The SP verifies the security token to ensure its authenticity. Then, it retrieves the attribute

values from the claims.
 6. The SP authorizes or denies access to the resource based on the attribute values.

12.1.2 Authentication and WIF
Over the past decades, people have designed different protocols for authentication processes, such
as SAML, ws-Federation, OpenID, Kerberos, and NTLM for Windows. Although these protocols
are widely used, to fully understand them in detail requires much time and effort, which are often
beyond what most developers would like to invest in. Microsoft Windows Identity Foundation
(WIF) provides a simplified programming model that encapsulates the details of these protocols.
Developers do not need to understand any details of underlying protocols but can still write
complying codes. On the other hand, WIF also allows developers to dig into the protocols and
implement various customizations and extensions when necessary. WIF used to be a separate
download but with the release of .NET 4.5, claim-based authentication has been embedded deeply
into .NET runtime. Many WIF classes have been moved into the System namespace, showing the
confidence .NET has in claim-based architecture. We use WIF in the examples of this chapter.

12.1.3 Authentication Broker
The authentication process introduced in Section 12.1.1 is only a basic workflow. In more com-
plex scenarios, an authentication broker might be involved (see Figure 12.2). As an intermediate
between SPs and IdP, authentication brokers provide the following functionalities:

 ◾ Simplify SP development and maintenance. An authentication broker can hide protocol
details of interacting with different IdPs. The SP only needs to work with a single authentica-
tion broker, who in turn works with different IdPs. As for the SP, it only needs to manage one
trust relationship, which is the trust with the authentication broker. The authentication broker
then includes more IdPs into the circle of trust by managing trust relationships with each IdP.

 ◾ Allow an SP to support multiple IdPs at the same time. An authentication provider provides
the necessary mechanisms and user interfaces for end users to pick the IdP they need to use
for authentication. The user registration process is always a barrier for a user to sign up for
a new service. Allowing users to directly log in using their existing accounts, such as their
Microsoft account or Facebook account, is a great way for an SP to build up a bigger cus-
tomer base with little friction.

 ◾ An authentication broker can also modify the claims provided by an IdP, such as filtering or
enriching the claims and transforming claim formats. For example, in the case where an IdP
cannot provide claims required by an SP, an authentication broker can transform the claims
so that the needs of the SP can be satisfied.

Claim-Based Architecture ◾ 355

Figure 12.2 shows the authentication process when an authentication broker is involved.

 1. A user requests access to a resource (such as a web page) provided by an SP.
 2. The SP detects that the user has not been authenticated. It redirects the user to a trusted IdP

for authentication. In this case, the trusted IdP is the authentication broker.
 3. [Optional] If the SP supports multiple IdPs, the authentication provider allows users to pick

the IdP they want to use. This process is called home realm discovery. For example, the
authentication broker can provide a web page with links to different IdPs for users to choose
from. Or, it can automatically discover the intended IdP based on the information carried
by the user id (such as email domains when emails are used as user ids).

 4. The user is redirected to the selected IdP. He or she provides the required proofs to the IdP
to complete the authentication process.

 5. Once the user is authenticated, the IdP packages requested user attributes such as claims in a
security token and returns the token to the authentication broker. Note that the authentica-
tion broker does not perform actual authentication. Instead, it requests a token from the IdP
as a replaying party.

 6. The authentication broker verifies the token. Based on its configuration, the broker can
transform the claims as needed, such as modifying claims, adding new claims, or filtering
out some claims.

 7. The authentication broker packages the modified claims as a new security token and returns
it to the user.

 8. The user requests the resource again and attaches the security token to his or her request.
 9. The SP verifies the security token to ensure its authenticity. Then, it retrieves the attribute

values from the claims.
 10. The SP authorizes or denies access to the resource based on the attribute values.

User Identity provider Authentication broker Service provider

Please authentication with my trusted IdP

Request access

Authenticate... Security token

Request access

3 Choose an idp

6 Verify/transform security token

9 Verify
security token

Grant access

1

2

4

5

7

8

10

Figure 12.2 Authentication via an Authentication Broker.

356 ◾ Zen of Cloud

Note: Authentication and authorization in real life
The claim-based authentication and authorization process has great similarity with many
real-life scenarios. For example, when you take an airplane trip, the first step is to present
your id to the ticket counter staff to get a boarding pass. Expressed in terms of claim-based
architecture, your id card is a security token issued by an IdP (your DMV or other state
offices) that is trusted by an SP (the airline). The ticket counter staff acts as authentication
broker because it verifies one token (your id card) and issues a new token (your boarding
card). The boarding card has a different set of claims. It does not contain information such
as your age, address, height, and eye color, but contains additional information such as your
seat number. Once you board the plane, the boarding pass is your proof of being authorized
to sit on a designated seat.

This introduction to the authentication and authorization processes is simplified, but with suf-
ficient details that most developers need to understand to work with claim-based authentication
and authorization. After all, the goal of claim-based architecture is to free developers from proto-
col details and concentrate on business logics, so we will not dig into more details here. Regardless,
because there are multiple parties involved, and their configurations have to match up exactly for
everything to work together, it is essential to keep a clear picture of relationships among these
parties. When you try to modify configurations, you should avoid modifying multiple settings at
the same time. Instead, you should try to modify and verify configuration changes step by step.

12.2 introduction to Microsoft Azure AD
Microsoft Azure AD (WAAD) is a REST-style SaaS provided by Microsoft Azure. It provides
identity management and access control services to your services. Many Microsoft online ser-
vices, such as Microsoft Office 365, Dynamics CRM Online, Windows Intune, and Microsoft
Azure, support WAAD as an IdP. By using WAAD, you can not only outsource user man-
agement and authentication, but also achieve SSO with the previous services and an increas-
ing number of third-party services (including yours). So, all Microsoft Office 365 users are
your potential customers. That is a tremendous advantage in building up a customer base.
Moreover, WAAD also allows you to sync users and groups in your local Active Directories
(AD) to WAAD so that your existing AD users can directly log in to your cloud services with
the existing credentials.

WAAD is a multitenant system. You can provision new tenants for managing your users. The
users in your tenants are isolated from the users of other tenants. The user information saved on
Microsoft Azure is guarded by world-class security measures, which is far more secure comparing
to a custom user database that you manage yourself. Microsoft saving its users into WAAD proves
the reliability of the service. So, although the user data are not physically “in your hand,” they are
much more secure. This is similar to the difference between saving money in a bank and saving
money in a shoebox at home.

WAAD authentication service is free. However, Microsoft Azure Multifactor Authentication
service, which we will introduce later in this chapter, charges a small fee for authentication requests.

WAAD also provides a RESTful API called Graph, which allows you to access objects such as
Users, Groups, and Roles as well as to discover their relationships.

Claim-Based Architecture ◾ 357

At the time of writing this book, WAAD adds application access enhancements as well. This
feature allows you to easily manage access to SaaS applications, such as Safesforce, Box, and other
Microsoft and your own services, with a centralized view. You can easily configure SSO for your
users, and manage user access rights to all applications.

Note: WAAD is not a Domain Controller. WAAD only provides user management and
authentication service; it does not manage other resources such as computers.

12.2.1 Managing Microsoft Azure Tenants and Users
You can manage Microsoft Azure tenants and users using Microsoft Azure Management Portal.
You automatically get a WAAD tenant with your Microsoft Azure subscription. You can also
create additional ones via the portal. The followings steps will help you create a new tenant:

 1. Sign on to Microsoft Azure Management Portal.
 2. Click on the ACTIVE DIRECTORY link in the left panel to open the Active Directory

page. Then, click the ADD button on the command bar to create a new directory, as shown
in Figure 12.3.

 3. On the Add directory dialog, enter the domain name of your tenant (domain name has
to be globally unique), the region it belongs to (you should select the region where your
company is located), and a descriptive name, as shown in Figure 12.4. Click the check
button to continue.

 4. Once the directory is created, click on its name to navigate to its details page. Then, click
on the USERS link to switch to the user’s page. On the page, you can see your Microsoft
Account is listed in the user’s list. This is because by default the user is automatically

Figure 12.3 Active Directory page.

358 ◾ Zen of Cloud

configured as a Global Administrator of the directory. However, this user account is not
a member of your new tenant—you can observe that the user is a Microsoft account in
its SOURCED FROM column. You cannot remove this user from the tenant using the
management portal (nor can you remove a tenant at this point). To add a new user, click on
the ADD USER button on the command bar, as shown in Figure 12.5.

 5. On the ADD USER dialog, choose New user in your organization as TYPE OF USER,
and enter a user name, as shown in Figure 12.6. The new user name will have the format
[user name]@[tenant name].onmicrosoft.com. You can use your own custom domain as well
(more on this later).

Figure 12.5 User view.

Figure 12.4 Create a new directory.

Claim-Based Architecture ◾ 359

 6. On the next screen, enter the user name and display name, and select a role for the user.
You can create either a regular User or a Global Administrator. Click the next button to
continue, as shown in Figure 12.7.

 7. On the Get temporary password screen, click on the create button to create a temporary
password for the new user, as shown in Figure 12.8. When the user logs in for the first time,
he or she will have to change the password.

 8. Once the temporary password is generated, you can select to send the password in clear text
to the corresponding user via email. You can send the password to up to five email addresses,
as shown in Figure 12.9.

Figure 12.6 Add user dialog.

Figure 12.7 Configure user name and role.

360 ◾ Zen of Cloud

Note: You will not be able to view this password once you leave this screen. So be sure the
password is sent or noted down before you close this window. If the temporary password
is lost, you can click on the MANAGE PASSWORD button on the command bar of the
USERS page to reset the user’s password. This will generate a new temporary password,
which the user has to change the next time he or she logs on.

 9. Now the new tenant, and the new user, is ready for use.

Figure 12.8 temporary password screen.

Figure 12.9 Send temporary password screen.

Claim-Based Architecture ◾ 361

With WAAD, WIF, Visual Studio tooling, and Microsoft Azure Management Portal, Microsoft
provides a comprehensive set of tools and services for implementing claim-based authentication
scenarios. Next, we will learn the development processes of a couple of typical scenarios, starting
with the most basic one.

Example 12.1: Use Microsoft Azure AD for user authentication

Difficulty: *****
In this example, we create a simple Web PI website, and then configure it as one of the WAAD
Relying Parties. Before a user can access this website, he or she has to authenticate with WAAD
first. To run this example, you will need Visual Studio 2013 Professional or Ultimate edition. If you
do not have either version, you can go to Microsoft Visual Studio’s download page
http://www.microsoft.com/visualstudio/eng/downloads
to download a free trial.

Before we carry out the exact steps, let us recap the relationships among the participating com-
ponents. The system diagram is shown in Figure 12.10.

First, we need to establish the trust relationship between the WAAD tenant and the application.
As mentioned earlier, the trust relationship has to be mutual: the application needs to trust the
WAAD tenant as its IdP, and the WAAD tenant has to enlist the application as one of its trusted
Relying Parties. The configurations on both sides have to match up exactly in order for the relation-
ship to be established. Furthermore, we need to configure WIF into our application pipeline so that
we can leverage WIF to handle the authentication process for us. WIF provides IIS modules that
intercept the HTTP traffic and enables the workflow depicted in Figure 12.1. Obviously, getting
everything configured correctly is not necessarily an easy task. Fortunately, Visual Studio 2013
tooling makes this process extremely simple. In the following steps, you will see that we only need
to go through a simple wizard to get everything in place.

Now, let us get started.

 1. Before we start, we will create a new Global Administrator on the new WAAD tenant we
have just created. The identity tooling needs Global Administrator access to complete the
configuration steps for us.

Log on UI
WAAD
tenant

WIF Application

App

1

4

3
2

Figure 12.10 System diagram of example 12.1.

362 ◾ Zen of Cloud

 2. Launch Visual Studio 2013.
 3. Create a new ASP.NET Web Application. On the New ASP.NET Project dialog, select

the MVC template. Before we continue to create the application, click on the Change
Authentication button to start the process of configuring the trust relationship between our
WAAD tenant and the application, as shown in Figure 12.11.

 4. On the Change Authentication dialog, select the Organizational Accounts option,
and enter the domain name of your WAAD tenant into the Domain field, as shown in
Figure 12.12. Click the OK button to continue.

Figure 12.11 Change application authentication method.

Figure 12.12 Set up organizational account.

Claim-Based Architecture ◾ 363

 5. You will see a log on dialog shows up. Log on to your WAAD tenant as a Global Administrator.

Note: If the account you use is a new account, you will see an extra page asking you to set a
new password before you can log in.

 6. That is all! Once you log in successfully, you are back to the New ASP.NET Project
dialog, where you can click the OK button to finish creating the new ASP.NET
application.

 7. Press F5 to launch the application. You will notice that the Visual Studio tooling
has enabled SSL on your site and has changed the launch address to use HTTPS.
Because we do not have an appropriate certificate in place, you will see the certificate
warning as shown in Figure 12.13. Click on Continue to this website (not recommend)
to continue.

 8. You will be redirected to your tenant’s sign-in page for authentication. Enter a user name and
password from your tenant (not necessarily the Global Administrator account) to sign in, as
shown in Figure 12.14.

 9. Once the user has been authenticated, the browser is redirected back to your web applica-
tion, with authenticated user displayed at the upper-right corner of the page, as shown in
Figure 12.15.

 10. Signing out is autoconfigured as well (compared to earlier versions where you had to do some
additional coding). Click on the Sign out link to sign out. You will be redirected to a sign
out callback page after the user has been successfully signed out (see Figure 12.16). Now, try
to click on any of the links at the top. Because you have already signed out, you will need to
sign in again before you can access any of the pages.

Now that is almost magical. There are many things that happened behind the scenes. We will guide
you through the places where configurations have been changed without digging into too much
detail on specifics. This will help you easily locate where to check when you go deeper into the
authentication workflow.

Figure 12.13 Certificate warning.

364 ◾ Zen of Cloud

First, let us take a look at the Web.config file. You will see that two WIF modules (FAM and
SAM) are injected into the ASP.NET pipeline:

<system.webServer>
 <modules>
 <add name="WSFederationAuthenticationModule"
 ty pe="System.IdentityModel.Services.WSFederation

AuthenticationModule,
 Sy stem.IdentityModel.Services, Version=4.0.0.0,

Culture=neutral,
 Pu blicKeyToken=b77a5c561934e089" preCondition="managed

Handler" />

Figure 12.14 Sign in to your WAAD tenant.

Figure 12.15 Web page with a signed-in user.

Claim-Based Architecture ◾ 365

You will also find a new system.identityModel.services section added to the configuration file:

 <system.identityModel.services>
 <federationConfiguration>
 <cookieHandler requireSsl="true" />
 <wsFederation passiveRedirectEnabled="true"
 is suer="https://login.windows.net/zenofcloud.onmicrosoft.com/

wsfed"
 re alm="https://zenofcloud.onmicrosoft.com/Example69"

requireHttps="true" />
 </federationConfiguration>
 </system.identityModel.services>

The passiveRedirectEnable attribute specifies that the ws-Federation workflow (as shown in
Figure 12.1) should be enabled. Within the wsFederation element, the issuer attribute specifies
the address of the trusted IdP—our WAAD tenant in this case. The realm attribute, on the other
hand, identifies the application itself. This identifier has to be enlisted as a Relying Party with the
IdP before the IdP issues any token for the application.

Another attribute to observe is the ida:FederationMetadataLocation in appSettings. The
value of this attribute points to the IdP’s federation metadata address. When the IdP changes its
configuration, your application refreshes its own settings to match up with the new changes by
reading this metadata file.

 <add name="SessionAuthenticationModule"
 ty pe="System.IdentityModel.Services.

SessionAuthenticationModule,
 Sy stem.IdentityModel.Services, Version=4.0.0.0,

Culture=neutral,
 Pu blicKeyToken=b77a5c561934e089" preCondition="managed

Handler" />
 </modules>
 </system.webServer>

Figure 12.16 Sign out callback page.

366 ◾ Zen of Cloud

On the WAAD side, your application has been registered as a Relying Party. Log on to Microsoft
Azure Management Portal, and you will see the application enlisted in the APPLICATIONS view
of your WAAD tenant, as shown in Figure 12.17.

Open the application CONFIGURE page, where you can observe the application identifier
(the APP ID URI field) and a REPLY URL, as shown in Figure 12.18. After authentication is com-
pleted, your browser will be redirected to this address with posted back token. Obviously, this will
only work on your own local machine, and not on a deployed site. We will see how to fix this next.

Visual Studio tooling allows you to update your authentication settings when you publish
your website to Microsoft Azure. When you publish a website, you can update authentication
settings on the Publish Web wizard. You set this up on the Settings tab, where you can enter
the WAAD tenant you want to use as the IdP, as shown in Figure 12.19. You should note that to
make your published website work, you will need to update the TenantDbContext connection
to an SQL database instead of the default localDB connection. Then, after you publish your
website, you will see another application registered on your WAAD tenant with REPLY URL
correctly configured.

Figure 12.17 trusted applications by a WAAD tenant.

Figure 12.18 APP URL of an application.

Claim-Based Architecture ◾ 367

Before we move on to the next topic, let us take a quick look at what you need to do in your
application code. WIF sets the current thread’s user identity for you, so you can directly use the
identity in your code. For example, in _LoginPartial.cshtml, to display the name of the current user,
the code simply writes:

<li class="navbar-text">
 Hello, @User.Identity.Name!

You can also cast User.Identiy as a ClaimsIdentity type to access its associated claims. For example:

var roles = ((ClaimsIdentity)User.Identity).Claims
 .Where(c => c.ValueType == ClaimTypes.Role)
 .Select(c => c.Value);

12.2.2 Graph API
WAAD Graph API is a RESTful API provided by WAAD for querying and updating directo-
ries, including reading user lists and group lists; reading, updating, and validating users and user
groups; and updating passwords.

Note: WAAD is a directory on cloud, which is different from your on-premise active direc-
tories. You cannot query WAAD directories using LDAP.

Figure 12.19 Update authentication setting on Publish Web wizard.

368 ◾ Zen of Cloud

Example 12.2: Use Graph API

Difficulty: ****
In this example, we will modify the application in Example 12.1 to use Graph API to query the
directory. To complete this example, you will need do the following:

 ◾ First, download and install WCF Data Service 5.6.0 RTM Tools from the following address:
http://www.microsoft.com/en-us/download/confirmation.aspx?id=39373.

 ◾ Then, download Microsoft Azure AD Graph API Helper Library from the following
MSDN address: http://code.msdn.microsoft.com/Windows-Azure-AD-Graph-API-
a8c72e18. This library provides some helper classes for using Microsoft Azure AD Graph
API. The downloaded file is a compressed source code package. Expand the code to a local
folder of your choice.

Note: This example is adapted from
http://msdn.microsoft.com/en-us/library/windowsazure/dn151791.aspx.

 1. In Example 12.1, we only granted SSO access to the service principle (see step 4 of Example
12.1). In order to use Graph API, we first need to grant corresponding access rights.

 2. On Microsoft Azure Management Portal, open the application configuration page. Then,
click the MANAGE ACESS icon on the command bar. Next, on MANAGE ACCESS dia-
log, click on the Change the directory access for this app link, as shown in Figure 12.20.

 3. Check the SINGLE SIGN-ON, READ AND WRITE DIRECTORY DATA option. This
allows the application to read and write the directory. Click the check button to apply the
change (Figure 12.21).

 4. On the CONFIGURE page, scroll to the keys section. Drop down the Select duration
dropdown box and select 2 years. Then, click the SAVE button on the command bar to save
the change, as shown in Figure 12.22. This will create an access key that is good for 2 years.

 5. Once the key is saved, you can view and copy the key from the page (you can also look up
the CLIENT ID from the same page about the keys section), as shown in Figure 12.23.

Figure 12.20 Update directory access for an application.

Claim-Based Architecture ◾ 369

Figure 12.21 Grant directory access to an application.

Figure 12.22 Change access key expiration.

Figure 12.23 Get client id and access key from the configuration page.

370 ◾ Zen of Cloud

 6. In Visual Studio Solution Explorer, add the expanded Microsoft Azure AD Graph API Help
Library project (Microsoft.WindowsAzure.ActiveDirectory.GraphHelper) to the solution.

 7. Rebuild the solution.
 8. In the web application, add a reference to the newly added project.
 9. Then, in the web application, add a reference to Microsoft.Data.Services.Client (5.6.0.0

from the Extensions group).
 10. Modify the Web.config file to add new application settings:

<appSettings>
 <add key="ClientId" value="[your client id]"/>
 <add key="Password" value="[Your access key]"/>
 …

 11. Because the helper library uses 5.3.0.0, define two assembly mappings to map them to
5.6.0.0:

assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="Microsoft.Data.Services.Client"
 publicKeyToken="31bf3856ad364e35" />
 <b indingRedirect oldVersion="5.0.0.0-5.6.0.0"

newVersion="5.6.0.0" />
 </dependentAssembly>
 <dependentAssembly>
 <assemblyIdentity name="Microsoft.Data.Edm"
 publicKeyToken="31bf3856ad364e35" />
 <b indingRedirect oldVersion="5.0.0.0-5.6.0.0"

newVersion="5.6.0.0" />
 </dependentAssembly>
 …

 12. Modify the Index() method of the HomeController to read the directory to get a user list:

public ActionResult Index()
{
 string tenantName = ClaimsPrincipal.Current.FindFirst
 ("h ttp://schemas.microsoft.com/identity/claims/tenantid").

Value;
 string clientId = ConfigurationManager.AppSettings["ClientId"];
 string password = ConfigurationManager.AppSettings["Password"];
 AADJWTToken token = DirectoryDataServiceAuthorizationHelper
 .GetAuthorizationToken(tenantName, clientId, password);
 DirectoryDataService graphService =
 new DirectoryDataService(tenantName, token);
 Qu eryOperationResponse<User> response = graphService.users.

Execute()
 as QueryOperationResponse<User>;
 return View(response.ToList());
}

Claim-Based Architecture ◾ 371

 13. Modify the Views\Home\Index.cshtml file to display the user list, as shown in the
following code list:

@model IEnumerable<Microsoft.WindowsAzure.ActiveDirectory.User>

…

<div class="row">
 <table>
 <tr>
 <th>Name</th>
 <th>UPN</th>
 </tr>
 @if (Model != null)
 {
 foreach (var user in Model)
 {
 <tr>
 <td>@user.displayName</td>
 <td>@user.userPrincipalName</td>
 </tr>
 }
 }
 </table>
</div>

 14. Launch the application again and you will see the user list displayed on the page, as shown
in Figure 12.24.

Figure 12.24 User list displayed on home page.

372 ◾ Zen of Cloud

12.3 Microsoft Azure AD new Features
Just as other Microsoft Azure services, WAAD is under constant development. At the
time of writing this book, WAAD is adding some new exciting features, which we briefly
summarize here.

12.3.1 Azure Authentication Library
In the previous examples, we used a browser as the client, and the authentication workflow was
based on browser address redirections. This type of authentication paradigm is called Passive
Client Authentication. On the other hand, Windows desktop applications, including the Windows
8 Store applications, are considered Active Clients. Active Clients cannot directly leverage browser
redirection to complete the authentication process. Instead, they can leverage Microsoft Azure
Authentication Library (AAL) to do the job. By using AAL, your active clients can rely on WAAD
or other IdPs for authentication. AAL is a NuGet library, which you can download and install
from the official NuGet site:

Install-Package Microsoft.IdentityModel.Clients.ActiveDirectory

For an example of how to use AAL, you may consult the following MSDN example page: http://
msdn.microsoft.com/en-us/library/windowsazure/79e09d59-08b9-446a-8ead-209134a4326d.

12.3.2 Microsoft Azure Active Directory Premium
Microsoft Azure Active Directory Premium is built upon the free WAAD service and provides a
set of advanced features that enterprises need. These features include the following:

 ◾ User self-service password reset
 For an enterprise that has tens of thousands of users, self-service is critical for relieving

IT staff from small tasks such as resetting passwords that can be carried out by end users
themselves.

 ◾ Group-based application access
 Managing application access by groups is an essential requirement of many enterprises.

For example, you can grant access to sales applications to the sales group, and access to
marketing applications to the marketing group.

 ◾ Company branding
 Sometimes, little touches can go a long way. Company branding allows you to use your own

logos and color schemes on your Access Panel, providing the user a more seamless experience
navigating among the enterprise applications.

 ◾ Additional security reports
 More detailed security reports will help you gain new insights to improve access security and

respond to potential threats.

At the time of writing this book, the Premium feature is a preview service that you need to sign
up for separately.

Claim-Based Architecture ◾ 373

12.4 Summary
This chapter started with a brief introduction of authentication and authorization. Then, it moved
on to introduce the basic features of Microsoft Azure Active Directory, including sign on, sign
off, and Graph API. Then, the chapter covered the new developments of the service. Of course,
merely the fundamentals were presented here. Microsoft’s WIF hides the details of underlying
protocols, so you can implement authentication scenarios without much specialized knowledge.
For interested readers who want to dig deeper, we recommend reading Programming Windows
Identity Foundation by Vittorio Bertocci.

iiiDeViCeS AnD CLoUD

The explosive development of mobile devices has had a profound impact on how we work,
communicate, entertain, and learn. Mobile devices have not only become an integral part of
our personal lives, but also an invaluable assistant for us to access business functionalities from
anywhere, at any time. Most successful mobile applications provide access to some sort of services.
According to my own survey on application galleries in 2012, about 85% of the top mobile
applications are connected to Internet-based or cloud-based services. The result does not include
single-player games, which often save a certain amount of information, such as player info and
rankings, on backend services as well. So, devices plus cloud has become the main architecture
choice for building powerful mobile applications.

377

Chapter 13

Mobile Service

Microsoft Azure Mobile Service is a turnkey solution for building devices plus cloud applica-
tions. It allows mobile developers to quickly build a mobile application with back-end support on
popular mobile platforms such as iPhone, Android, Windows Phone, and Windows 8/8.1 devices.

13.1 Mobile Service overview
Mobile Service provides a set of services that help mobile developers to build back-end services
for their mobile applications without needing to understand how to host and maintain high-
availability, cloud-based back-end services by themselves. Mobile Service provides the following
features:

 ◾ Data storage. You can easily save data to an SQL database. Mobile Service automates data-
base managements and schema updates so that you do not need any deep SQL knowledge
to read and write data.

 ◾ Back-end business logic. Mobile Service allows you to write JavaScript backend or .Net
backend to respond to various data operation events. For example, you can define scripts
that respond to data insertions, updates, deletions, and queries to perform custom opera-
tions. In addition to data-driven scripts, Mobile Service also supports creating APIs for
mobile clients to call directly.

 ◾ User authentication. At the time of writing this book, Mobile Service provides built-in
support for authentication with WAAD.

 ◾ Push notifications. Mobile Service provides support for sending push notifications to
Windows devices, iOS devices, and Android devices.

 ◾ Scheduled tasks. Mobile Service also allows you to define periodically triggered business
logics.

Now, let us learn how to create a simple Windows Store application using Mobile Service.

378 ◾ Zen of Cloud

Example 13.1: Use Mobile Service to build a Windows Store application

Difficulty: *
In this example, we will create a simple Windows Store application to manage to-do items using
Mobile Service.

 1. Log in to Microsoft Azure Management Portal.
 2. On the command bar, select NEW→COMPUTE→MOBILE SERVICE→CREATE.
 3. On the NEW MOBILE SERVICE window, enter a URL for your Mobile Service. In the

DATABASE field, you can choose to use an existing SQL database or create a new one (you
can take advantage of the free 20 MB SQL database offering). Select a REGION where
you want the service to be provisioned and click the next button to continue, as shown in
Figure 13.1.

 4. On the Specify database settings screen, select to create a new SQL database server. Set
up database login credentials, and then click the check button to complete the operation, as
shown in Figure 13.2.

 5. After the Mobile Service has been created, click on its name to open its details page. On the
page, you will find links to generate an application for popular platforms, including Windows
Store, Windows Phone 8, iOS, Android, HTML/Javascript, Xamarin and PhoneGap. Here
we will choose Windows Store, as shown in Figure 13.3.

 6. [Optional] You can click on the Install Visual Studio Express 2013 for Windows link to
install a free Visual Studio Express 2013 tailored for developing Windows Store applications.
We will use the Visual Studio Ultimate edition on our machine.

 7. Now you can create the database table for your data. Simply click on the Create TodoItem
Table button (see Figure 13.3) to create a default to-do items table.

 8. Once the table is created (see Figure 13.4), you can click on the Download button to
download an autogenerated application. The default language is C#, but you can select a
JavaScript-based version as well.

 9. Extract the downloaded zip file to a local folder of your choice.
 10. Open the Visual Studio solution file (the .sln file). When you see the security warning as

shown in Figure 13.5, click on the OK button to continue.

Figure 13.1 Creating a new Mobile Service.

Mobile Service ◾ 379

Figure 13.2 Specify database settings.

Figure 13.3 Mobile Service details page.

380 ◾ Zen of Cloud

 11. Visual Studio will prompt you to get a Windows 8.1 developer license. If you agree with the
terms, click on the I Agree button to continue, as shown in Figure 13.6.

 12. You will be prompted to log in using your Microsoft Account.
 13. Once you have logged in, you will be notified that you have acquired a developer license.

Click on the Close button to continue, as shown in Figure 13.7.
 14. In Visual Studio, select the BUILD→Rebuild solution menu to rebuild the solution.

Note: If you receive a “Package restore is disabled by default” error, it is because the NuGet
package restore feature is turned off. To fix the problem, select the PROJECT→Enable
NuGet Package Restore menu to enable NuGet package restore. Then, rebuild the
solution.

 15. Press F5 to launch the application. You can enter new to-do items in the text box to the left,
and click on the Save button to add them to the list to the right, as shown in Figure 13.8.

Figure 13.4 Download autogenerated application.

Figure 13.5 Security warning.

Mobile Service ◾ 381

In just a few minutes, you have created a complete mobile application with a front end and a back
end. The system is fully functional with all necessary configurations in place. You can use this
application as the starting point of your own application.

Next, we will keep building on the application and make some changes in both the front end
and the back end.

Example 13.2: Mobile Service back-end programming

Difficulty: *
This example continues from the previous example. We first add simple data validation on the
server side and then add a new timestamp field.

Figure 13.6 Developer license prompt.

Figure 13.7 notification of acquired developer license.

382 ◾ Zen of Cloud

Note: This example is based on a sample from the official Microsoft Azure site:
http://www.windowsazure.com/en-us/develop/mobile/tutorials/validate-modify-and-
augment-data-dotnet/.

 1. Log in to Microsoft Azure Management Portal. Open the DATA page of the Mobile Service
you created in Example 13.1, as shown in Figure 13.9. You can observe the number of records
in the TodoItem table. Click on the table name to open its details.

 2. On the details page, you can browse table data, edit data trigger scripts, examine table
schema, and modify access rights. Click on the SCRIPT link to open the online script edi-
tor, where you can write scripts that respond to various operations, such as insert, update,
delete, and read, as shown in Figure 13.10.

Figure 13.8 Running to-do item application.

Figure 13.9 Mobile Service data page.

Figure 13.10 online script editor.

Mobile Service ◾ 383

 3. Replace the insert script with the following script, which verifies if the text property of
the submitted item is less than 30 and rejects the request if the string is too long. After
you have entered the new code, click the SAVE button on the command bar to save
the script. In addition to providing the online editor, Mobile Service also allows you to
edit the scripts directly in Visual Studio. You can locate and edit the scripts in Server
Explorer.

function insert(item, user, request) {
 if (item.text.length >30) {
 request.respond(statusCodes.BAD_REQUEST,
 'St ring can\'t be longer than 30

characters.');
 } else {
 request.execute();
 }
}

 4. Launch the application you created in the last example again. Try to enter a to-do item that is
longer than 30 characters, and you will receive a MobileServiceInvalidOperationException,
as shown in Figure 13.11.

 5. Modify the InsertTodoItem method to handle this exception. The modified code is shown
in Code List 13.1.

 6. Run the application again. Enter a to-do item that is longer than 30 characters. Click on the
Save button to observe how the error message is displayed (see Figure 13.12).

 7. Next, we will add a new timestamp field to the system. In the online script editor, modify the
Insert method again to replace the code with Code List 13.2. Note that line 6 of the code
adds a new createdAt field to the record. Mobile Service supports dynamic table schema so
that you can directly add a new field in the code like this without needing to worry about
maintaining table structure. Before you put your service into production, however, you
should turn off dynamic schema (in the Mobile Service CONFIGURE page, set ENABLE
DYNAMIC SCHEMA to OFF).

 8. Launch the application again. Insert a few new records. Then, on the DATA page of the
Mobile Service, you will observe the new records with the additional createdAt field.

Figure 13.11 MobileServiceinvalidoperationexception.

384 ◾ Zen of Cloud

CODE LIST 13.1 CLIENT-SIDE EXCEPTION HANDLING

private async void InsertTodoItem(TodoItem todoItem)
{
 // This code inserts a new TodoItem into the database.
 // When the operation completes and Mobile Services has
 // assigned an Id, the item is added to the collection.
 try
 {
 await todoTable.InsertAsync(todoItem);
 items.Add(todoItem);
 }
 catch (MobileServiceInvalidOperationException e)
 {
 MessageDialog errormsg = new MessageDialog(e.Message,
 string.Format("{0} (HTTP {1})",
 e.Response.ReasonPhrase,
 e.Response.StatusCode));
 var ignoreAsyncOpResult = errormsg.ShowAsync();
 }
}

Figure 13.12 input validation error on the client.

Mobile Service ◾ 385

 9. Now let us modify the client to display the additional field. First, modify the TodoItem class
in the MainPage.xaml.cs file to add the field:

public class TodoItem
{
 …
 [JsonProperty(PropertyName = "createdAt")]
 public DateTime? CreatedAt {get; set;}
}

 10. Modify the MainPage.xaml to display the new CreatedAt field. The modified UI code is
shown in Code List 13.3.

CODE LIST 13.2 ADDING A NEW TIMESTAMP FIELD

1: function insert(item, user, request) {
2: if (item.text.length >30) {
3: request.respond(statusCodes.BAD_REQUEST,
4: 'S tring can\'t be longer than 30

characters.');
5: } else {
6: item.createdAt=new Date();
7: request.execute();
8: }
9:}

CODE LIST 13.3 MODIFIED UI

 1: …
 2: <ListView Name="ListItems" Margin="62,10,0,0" Grid.Row="1">
 3: <ListView.ItemTemplate>
 4: <DataTemplate>
 5: <StackPanel Orientation="Horizontal">
 6: <CheckBox Name="CheckBoxComplete"
 7: IsChecked="{Binding Complete, Mode=TwoWay}"
 8: Ch ecked="CheckBoxComplete_Checked" Content="{Binding

Text}"
 9: Margin="10,5" VerticalAlignment="Center"/>
10: <TextBlock Name="WhenCreated" Text="{Binding CreatedAt}"
11: VerticalAlignment="Center"/>
12: </StackPanel>
13: </DataTemplate>
14: </ListView.ItemTemplate>
15: </ListView>
16: …

386 ◾ Zen of Cloud

 11. Modify the RefreshTodoItems method in the Mainpage.xaml.cs file to sort the data by the
CreateAt field in descending order:

…
items = await todoTable
 .Where(todoItem => todoItem.Complete == false
 && todoItem.CreatedAt != null)
 .OrderByDescending(todoItem => todoItem.CreatedAt)
 .ToCollectionAsync();
…

 12. [Optional] Modify the InsertToDoItem method and change items.Add(todoItem) to
items.Insert(0, todoItem) so the new to-do items are displayed at the top of the list.

 13. Launch the application again to observe the updated display.

13.2 Push notifications
One of the advantages mobile clients have over traditional desktop clients is to be able to interact
with end users anywhere at any time. The close relationship between mobile devices and end users
makes mobile devices perfect for improving user engagements. A cloud service is designed to
serve a wide user base. An available and scalable service design requires the service to be designed
to have least dependencies on operational contexts. On the other hand, personalized service is a
common expectation of end users. Mobile devices supplement cloud services by providing service
personalization and added stickiness. In other words, mobile devices put cloud services into users’
hands so that users can enjoy these services at any time. In addition, mobile devices can also pro-
actively engage with users by sending notifications to them.

13.2.1 Push Notification Overview
Most popular mobile platforms support push notifications. However, each platform has its
own Platform Notification System (PNS). For instance, Windows mobile devices use Windows
Notification Service (WNS); iOS devices use Apple Push Notification Service (APNS); and most
Android devices use Google Cloud Messaging for Android (GCM) or polling. Although these
platforms differ from each other, they work in a similar fashion, as shown in Figure 13.13.

 1. The mobile device contacts the PNS and gets a handle. The exact name and format of the
handle varies from platform to platform. WNS calls it URL or Push Channel. APNS calls
it Token, and GCM calls it Registration Id.

 2. The handle is submitted to back-end service and saved for later use.
 3. When sending a notification, the back-end service provides the handle to the PNS service.
 4. The PNS service sends the message to the final target: the combination of a device and an

application.

Now let us learn how to push notifications to Windows devices by an example.

Mobile Service ◾ 387

Example 13.3: Push notifications to Windows devices

Difficulty: *
This example continues from Example 13.2. We use WNS service to push messages to Windows
devices. We go through the complete process of device registration, handle management, and push
notification.

Note: This example is based on a sample from official Microsoft Azure site
http://www.windowsazure.com/en-us/develop/mobile/tutorials/push-notifications-to-users-
dotnet/
and a tutorial from the same site
http://www.windowsazure.com/en-us/develop/mobile/tutorials/get-started-with-push-
dotnet/.

 1. First, you need to submit your application to Windows Store. Open a browser and log in
to Windows Store apps developer center (https://appdev.microsoft.com/StorePortals/en-US/
Home/Index). If you do not have a subscription, you will need to create a paid subscription
first.

 2. Click on the Submit an app link to start submitting your application, as shown in
Figure 13.14.

 3. Click on the App name link. Then, on the Submit an app page, enter a name for your appli-
cation. Click Reserve app name to reserve the application name (Figure 13.15).

 4. After the name has been reserved, click the Save button.
 5. Open the application in Example 13.2 with Visual Studio. In Solution Explorer, right-

click the project, and select the Store→Associate App with the Store menu, as shown in
Figure 13.16.

 6. On Associate You App with the Windows Store dialog, click on the Sign In button.
 7. Log in using Microsoft Account.
 8. On the Select an app name page, select the application name you just reserved, and click the

Next button to continue, as shown in Figure 13.17.
 9. On the last screen, click on the Associated button to complete the operation.
 10. Go back to the Windows Store developer center, and click on the Services button, as shown

in Figure 13.18.
 11. On the Services page, click on the Live Services site link (as indicated by the arrow in

Figure 13.19).

PNS

Back end service

Mobile device

2

1

4

3

Figure 13.13 General workflow of push notification.

388 ◾ Zen of Cloud

 12. On the Push notifications and Live Connect services information page, click on the
Authenticating your service link, as shown in Figure 13.20.

 13. Now you can copy your Package Security Identifier (SID) and the Client secret from this
page, as shown in Figure 13.21.

 14. Return to Microsoft Azure Management Portal. Go to the PUSH page. Paste in your SID
and client secret, and then click on the Save button, as shown in Figure 13.22.

Figure 13.14 Submitting a new application.

Figure 13.15 Set up application name.

Mobile Service ◾ 389

Figure 13.16 Associate app with the Store.

Figure 13.17 Select submitted application.

390 ◾ Zen of Cloud

Figure 13.18 Services button.

Figure 13.19 Live Service site link.

Figure 13.20 Push notification and live connect service information page.

Figure 13.21 SiD and client secret.

Mobile Service ◾ 391

 15. In Visual Studio, paste the following code to App.xaml.cs:

using Windows.Networking.PushNotifications;
…
sealed partial class App: Application
{
 pu blic static PushNotificationChannel CurrentChannel {get;

private set;}
 private async void AcquirePushChannel()
 {
 CurrentChannel = await PushNotificationChannelManager.
 Cr eatePushNotificationChannelFor

ApplicationAsync();
 }
 …
}

 16. Add the following line on the top of the OnLaunched method:

AcquirePushChannel();

 17. Add a Channel field to the TodoItem class in MainPage.xaml.cs:

[JsonProperty(PropertyName = "channel")]
public string Channel { get; set; }

Figure 13.22 Paste client secret and SiD into Microsoft Azure Management Portal.

392 ◾ Zen of Cloud

 18. Replace the ButtonSave_Click method with the following code:

private void ButtonSave_Click(object sender, RoutedEventArgs e)
{
 var todoItem = new TodoItem
 {
 Text = TextInput.Text,
 Channel = App.CurrentChannel.Uri
 };
 InsertTodoItem(todoItem);
}

 19. In the script online editor, replace the Insert script with the following code:

function insert(item, user, request) {
 request.execute({
 success: function() {
 request.respond();
 push.wns.sendToastText04(item.channel, {
 text1: item.text
 }, {
 success: function(pushResponse) {
 console.log("Push Notification: ", pushResponse);
 }
 });
 }
 });
}

 20. Press F5 to launch the application. Add a new to-do item, and observe the notification mes-
sage appearing at the upper-right corner of the screen, as shown in Figure 13.23.

Note: Visual Studio 2013 simplifies these steps.

Figure 13.23 Push notification on client.

Mobile Service ◾ 393

13.3 Scheduler and APi
Scheduler allows you to periodically trigger back-end logics. Let us see how it works with an
example.

Example 13.4: Scheduler

Difficulty: *
This example continues from Example 13.3. We add a simple scheduled job to the system.

 1. On Microsoft Azure Management Portal, switch to the SCHEDULER view of your
Mobile Service. Click on the CREATE button on the command bar to create a new
scheduled job.

 2. On the Create new job dialog, enter a job name, and then click the check icon to continue,
as shown in Figure 13.24.

 3. The new job is disabled by default. Click on the name of the job to open its details page.
Switch to SCRIPT view, where you can enter the Node.js script that gets periodically
invoked. Figure 13.25 shows a modified script that logs a message when called. After
you have modified the script, click on the SAVE button on the command bar to save the
changes.

 4. Then, click on the RUN ONCE button to test the script. Once the script is executed, you
can go back to the LOG view of the Mobile Service and observe the logged entry, as shown
in Figure 13.26.

In addition to scheduled jobs, Mobile Service also allows you to define REST-style APIs for client
application to call directly. It is fairly easy to define and use API, which we will see in the following
example.

Figure 13.24 Create a new scheduled job.

394 ◾ Zen of Cloud

Example 13.5: API

Difficulty: *
This example extends Example 13.4 and adds a simple “hello world” API to the system.

 1. On the Mobile Service’s API page, click on the CREATE icon on the command bar.
 2. On the Create a new custom API dialog, enter api_test as the API name. Your API will

have the address http://[Mobile Service name].azure-mobile.net/api/[API name]. For
simplification, set GET PERMISSION to Everyone to allow anonymous HTTP GET
requests; otherwise, you will need to attach a valid authentication token with your request.
Click the check icon to complete the operation, as shown in Figure 13.27.

 3. After the API is created, click on the API name to open the script editor. Mobile Service
provides sample implementations for both POST method and GET method:

exports.post = function(request, response) {
 // Use "request.service" to access features of your mobile

service, e.g.:
 // var tables = request.service.tables;

Figure 13.25 Modified script.

Figure 13.26 the log entry generated by the scheduled job.

Mobile Service ◾ 395

 4. Modify the GET method implementation to return some HTML contents instead of the
JSON object:

exports.get = function(request, response) {
 response.send(statusCodes.OK, "<h1>Hello World!</h1>");
};

 5. Open a browser and navigate to http://[Mobile Service name].azure-mobile.net/api/[API
name], and you will see the returned <h1> tag, as shown in Figure 13.28.

 // var push = request.service.push;

 response.send(statusCodes.OK, { message : 'Hello World!' });
};

exports.get = function(request, response) {
 response.send(statusCodes.OK, { message : 'Hello World!' });
};

Figure 13.27 Create a custom APi.

396 ◾ Zen of Cloud

13.4 Summary
Microsoft Azure Mobile Service provides a turnkey solution for mobile application developers to
quickly create supporting back-end services to provide data storage, push notification, authen-
tication, API, and scheduled jobs. In this chapter, we learned the basic steps of provisioning a
new Mobile Service, saving data to the back-end server, sending push notifications, and defining
scheduled jobs and APIs.

Figure 13.28 Calling Mobile Service APi.

397

Chapter 14

internet of things

When we talk about “devices,” we should not constrain ourselves to smart phones and tablets.
With the development of the Internet and telecommunication technologies, the number and types
of devices that are capable of connecting and communicating with each other are constantly
growing. These devices are playing increasingly important roles in various areas such as telemetry,
automatic control, logistics, robotics, and artificial intelligence. In this chapter, we first provide
a brief overview of Internet of Things (IoT). Then, we analyze the relationship between IoT and
cloud. Finally, we study IoT developer experiences provided by Microsoft.

14.1 iot overview
The term Internet of Things was proposed by Kevin Ashton in 1999. Till today, IoT is a relatively
new concept and people have not agreed on a precise definition of it. As the name suggests, IoT
refers to a large number of “things” that are connected by a network. A “thing” in IoT can be
many things, such as a smart phone, a tablet, or a sensor. However, some common characteristics
of “things” can be summarized:

 ◾ Uniquely identifiable communication nodes. Although the “things” in IoT differ from each
other in a thousand ways, they can all be uniquely identified and most of them can par-
ticipate in communications independently. Here “communication” is not limited to data
exchanges over the Internet, but also in other ways such as telephone networks, satellites,
inductions, and even chemical reactions.

 ◾ Automatic data exchanges. Data exchanges in IoT often happen without human interven-
tions. Automatic data acquisition, analysis, exchange, and publication eliminate error-prone
human factors and ensure efficient, precise system operations.

 ◾ Real-world contexts. The “things” on IoT are closely connected to real-world environments
and objects. The data collected by the “things” are often relevant only to a specific time,
location, and object. For example, a speedometer attached to a car only reflects the temporal
speed of the specific car. The reading is most meaningful only when it is read in real time.

398 ◾ Zen of Cloud

In the following sections, we introduce several typical IoT application scenarios, through which
we can gain more insights into different characteristics of the IoT.

14.1.1 Radio Frequency Identification
Radio Frequency Identification (RFID) is a noncontact wireless data exchange technology. RFID
tags, especially passive RFID tags, have been widely used in our lives, such as ID cards, public
transportation cards, and hotel key cards. However, the most important application of RFID is in
the field of logistics. For example, the ISO/PAS 18186 RFID Cargo Tag, invented by Bao Qifan
from China, has been widely used in major waterways around the globe to seamlessly track the
movement of containers. Another example is Walmart, which has been advocating and applying
RFID technology throughout its systems. It uses RFID to optimize inventory levels, improve
turnover of stock, and increase processing accuracy and efficiency.

RFID is also used in positioning within a controlled environment. Active RFID tags can be
used to provide position tracking with higher precision in a local environment, especially in an
indoor setting, which is often a blind area of satellites. Furthermore, the Near Field Communication
(NFC) technology, which is developed on RFID, is gaining wider adoption as well.

Note: Windows Phone 8 and some of the Windows 8–based laptops and tablets have built-
in NFC capabilities. Interested readers may consult Windows Store applications developer
center: http://msdn.microsoft.com/en-us/library/windows/apps/hh465205.aspx.

RFID has all the IoT characteristics summarized earlier: RFID tags uniquely identify objects; read-
ers exchange data with RFID tags without user inputs; and RFID tags are associated with real-world
objects. RFID also shows that a “thing” in IoT does not necessarily need much (or any, in case of
passive tags) possessing power like that of smart phones or tablets to participate in data exchanges.

14.1.2 Artificial Intelligence Equipment
The equipment on IoT is not limited to data acquisition; it may also process the data intelligently
and directly interact with the physical environment. For example, many car manufacturers and
high-tech companies are developing self-driving cars. These cars can plan their maneuvers based
on real-time image analysis, distance sensors, and digital maps. Multiple self-driving cars can also
exchange data with each other to coordinate smoother traffic. It is easy to anticipate that the wide
adoption of self-driving cars will have a profound impact on road transportation by reducing acci-
dents, increasing speed limits, optimizing energy consumption, and avoiding jams.

We can consider self-driving cars a part of IoT because of the ambiguous definition of “things”
in IoT: as long as a component can identify itself and participate in data exchange, it can be con-
sidered a part of IoT. Equipment on IoT can be as simple as an RFID tag or as complex as a car,
which is a combination of mechanical and electrical parts. The inclusiveness of IoT allows a very
rich set of scenarios. We will take a peek into the examples later in this chapter.

14.1.3 Wearable Devices
Wearable device is not a new concept. It can be traced back to the 1990s, when Steven Mann
first introduced the concept. Wearable device is one form of Ubiquitous Computing, which

Internet of Things ◾ 399

allows humans to interact with computing services in natural, intuitive ways without explicit
engagement with a computer. For example, a pair of smart glasses that has face recognition
capability can use Augmented Reality (AR) to superimpose recognized names onto the user’s
view. It can also directly present surrounding information such as nearby restaurants, shops,
and activities to the user without the user explicitly operating a computer—all the user needs
to do is to look around.

Many people believe wearable devices will lead the next wave of consumer electronics. We
shared the same view, but believe the next wave will include not just wearable devices but also
other technologies such as immersive gaming and spatial display.

14.1.4 Wireless Sensor Network
Wireless Sensor Network (WSN) is a network of connected sensors that are capable of collecting
environmental data from a given region. The main application areas of WSN include air-quality
monitoring, forest fire detection, landslide detection, and water-quality monitoring. Such data are
collected to centralized locations for storage and analysis either by direct connections to the server
or through multiple hops among sensors to finally reach the server.

14.2 Devices and Cloud
We are living in the era when Ubiquitous Computing is quickly becoming a part of our everyday
lives. With the development of cloud technology, Ubiquitous Computing also means Ubiquitous
Cloud, which means cloud-based services are becoming natural extensions of our lives to provide
enhancement to our day-to-day activities. The combination of devices and cloud provides unprec-
edented opportunities and unlimited energy for the development of Ubiquitous Computing. They
complement each other so well that together they empower many innovative scenarios to make
our lives better.

14.2.1 Importance of Devices for Cloud
One of the main characteristics of cloud service is its high availability to a broad audience. In
other words, as far as a cloud service is concerned, a conversation with a customer is merely to
respond to a request. However, to an end user, the perception of a conversation with the services
has a much longer span and much richer contexts. For example, a user who is arranging weekend
activities may use a search engine to search for restaurants, an online ticketing site for movie tick-
ets, a navigation service to find directions, and a payment service to pay for the expenses. This real-
life activity happens at different locations, over a couple of days, and involves a number of cloud
services. None of the involved services actually understands or captures this context. However,
a carefully designed mobile application can create the connections among them and provide a
complete end-to-end user experience. In other words, mobile devices make cloud service more
relevant to our lives by providing the connections to our real-life contexts and anytime access,
anywhere, to the services while the situation is still relevant. Another example of such relevancy is
a user searching for a restaurant. A search from a mobile phone can be automatically augmented
by location and time so that the user can find a nearby restaurant that is open at the moment:
obviously, if you were in Seattle, finding even the best restaurant in Sydney provides little value to
solve your dinner problem.

400 ◾ Zen of Cloud

Another importance of devices for cloud is their added stickiness. Many cloud-based ser-
vices have a very different business model compared to the traditional license-based software.
With the traditional license + maintenance contract sales model, the cycle of selling and imple-
menting a software system is quite lengthy, requiring considerable upfront investments and
serious commitments. The difficulties of implementing a new system, however, make giving
up a system a painful process as well. On the contrary, many cloud services use a subscription
model, where users can provision and use services via self-service. The increased agility and
lowered risk of subscribing to a new service is definitely beneficial for a new service to grab
market shares. The steady, predicable cash flow under the subscription model is favorable to
most service providers and investors. However, just because the risk of adopting a new service
is lowered, giving up a service is not as painful, either. So, it is not surprising to see cloud
service customers being less loyal to traditional software users. A service client installed on a
mobile device encourages the user to use the service more frequently. The sense of ownership
improves the stickiness of the service. Many media services and social network services are
making all the effort to offer free clients on various mobile platforms, because they understand
the value that mobile clients can have in terms of creating a tighter relationship with customers
and improving user loyalty.

The rich data acquisition and feedback capabilities of devices provide opportunities for cloud
service providers to offer value-added functionalities and richer end user experiences on the cli-
ents. As mentioned in earlier chapters, cloud services to end users are endpoints that provide some
sort of service. Their relevancy to real life is decided by the rich contexts provided by the devices.
Their reach is broadened by the devices. The end user experience they provide is enhanced by the
expressiveness of the devices.

14.2.2 Importance of Cloud for Devices
As mentioned at the beginning of Section III, most top mobile applications have a web-based or
cloud-based back end. The percentage of this architectural choice is simply too high to be coin-
cidental. Rather, this is a solid proof of how cloud and devices complement each other. Cloud
services can aggregate and analyze data collected by multiple devices, provide communication
channels among devices, and coordinate distributed workflows across different devices. For exam-
ple, a temperature sensor captures only a point temperature at a given time. However, when a
cloud service collects temperature readings from many strategically located temperature sensors,
it will be able to plot a heat map of a region. By storing and comparing historical data, it can
calculate trends in temperature changes. Moreover, by comparison with other data, it can detect
correlations between temperature changes and other factors such as human activities. All these
functionalities are impossible to be achieved by a single device.

Although the computational power and storage capacity on mobile devices are constantly
increasing, mobile device capabilities are still constrained by the weight, dimension, and bat-
tery life requirements. Cloud services provide unlimited extensions to these devices. For instance,
backing up files to cloud storage has become common practice in many mobile phones. With
future developments in networking technologies, an increasing number of tasks that were tradi-
tionally handled by client devices, such as game AI and screen rendering, can be performed on
cloud. It is easy to anticipate that with the power of cloud, the virtual world created by computers
will have unprecedented detail and fidelity. When human beings no longer perceive the difference,
the world will enter a new era where the virtual world and reality will fuse. We shall not digress
further here, but that is our true belief.

Internet of Things ◾ 401

Most of us take pictures using our cell phones. Mobile phone manufactures have been compet-
ing to provide a better photo experience. However, there is an interesting dilemma here: on the
one hand, the resolution of cameras keeps increasing to capture images and videos with higher
qualities; on the other hand, the larger data files keep adding pressure to the storage. This is a
catch-22 situation that the device itself finds hard to resolve. Many users have tried to take on the
matter themselves by backing up pictures to PCs and external devices. However, the complicity of
managing these backups is often unacceptable. Cloud provides an elegant solution to this problem.
User pictures can be safely preserved on cloud, and additional storage capacity can be acquired
at any time without affecting existing archives. In addition, cloud can provide additional value-
added services such as sharing, printing, and image processing. The trend is clear that eventually
data management will become totally transparent to end users. End users will no longer need to
worry where and how much data are to be saved, and they will be able to access their data from any
device just as if the data have been magically replicated everywhere for their convenience.

Note: We have to admit that here we are mixing the concepts of web services and cloud
services. Obviously, not all web services are hosted on cloud. However, as the Internet can
be viewed as a huge pool of resources that provides services via endpoints, it shares many
characteristics of cloud platforms. For devices, it really does not matter how these services
are hosted as long as they are accessible.

14.3 Challenges of iot
The development of IoT brings new challenges to system architecture, design, development, and
operation. Effectively managing a large number of devices and a large amount of data creates chal-
lenges in system availability, scalability, maintainability, performance, and throughput. For exam-
ple, addressing a large number of devices alone is a real problem. People have been seeking solutions
since the 1980s. The widely used IPv4 network can provide 232 (4,294,967,296) unique addresses in
theory. However, because many address spaces are reserved for special purposes, with the number
of devices exploding, IPv4 addresses can be exhausted. Although technologies such as NAT and
CIDR can provide some relief, IPv6, which provides 128-bit address spaces, is being widely adopted.

Managing a large number of devices is a challenge by itself—how would you effectively man-
age tens of thousands of devices? Obviously, manual management is not an option. We will have
to find ways to automate the process. For example, devices can automatically register and config-
ure themselves once they are connected. They keep themselves updated by periodically checking
for updates. They should be able to be monitored remotely and should send alerts when their
self-diagnosis fails. Moreover, they should employ a modular design so that they can be easily
maintained, fixed, or replaced. On the server side, capabilities such as unified management view,
centralized policy management, and security key distribution are all essential features for an effi-
cient management system.

Note: One example of such a modular design is Field Replaceable Units (FRU). They are
parts that can be easily pulled out and replaced with new ones to minimize the cost and
complexity of hardware maintenance.

402 ◾ Zen of Cloud

Data acquisition is another challenge. As a matter of fact, the data acquisition problem is one of
the major problems to be solved for IoT. It requires not only enhancement in networking tech-
nologies and adoption of industrial standards, but also careful designed architectures that fully
take network bandwidth, storage, and computation needs into consideration. All cloud services
hosted on Microsoft Azure are subject to capacity limitations. For instance, different compute
node sizes have different bandwidth allocation associated with them. Each storage account
has a quota on maximum transactions that can occur per second (the limitation is 20,000
transactions per second at the time of writing this book). Such quotas should be sufficient for
most applications. However, they become overconstrictive when you need to work with a huge
number of devices. To work around these limitations, you may need to horizontally segment
your workload to multiple service entities such as multiple storage accounts or even multiple
subscriptions. In addition, storage of excessive amount of data incurs excessive cost. So you will
need to make cautious choices of where and how data are stored. For example, you can store log
files that do not need complex queries into table storage service, and extracted key features into
an SQL database for complex queries and BI. Temporal data can be saved in cache clusters for
faster access and lowered storage cost.

14.4 .net Micro Framework
As this book is designed primarily for developers using Microsoft technologies, we will present a
brief introduction of .NET Micro Framework in this section. For many developers who develop
PC-based systems using high-level languages such as C# and Java, coding against an embedded
system is a very foreign concept. Microsoft’s Micro Framework allows .Net developers, especially
C# developers, to write a code for embedded systems using the language and tools that they are
familiar with.

14.4.1 .NET Micro Framework Overview
.NET Micro Framework is an open-source environment for developing software running on
embedded systems. .NET Micro Framework allows .NET developers to write a code for embedded
systems using languages they know (such as C#) in the environment they are familiar with (such
as Visual Studio) so that they can quickly ramp up on embedded system developments without
needing to learn low-level languages and acquiring device-specific knowledge.

Note: You can download Micro Framework from CodePlex.
If you use Visual Studio 2010, you should use .NET Micro Framework SDK 4.2 (download
the address http://netmf.codeplex.com/releases/view/91594). If you are using Visual Studio
2012 or higher, you should use the 4.3 version (download the address http://netmf.codeplex.
com/releases/view/81000).

Seeing is believing. Now we will go through the development process using .NET Micro
Framework with an example. You do not need any special hardware to run through the following
example. All you need is Visual Studio and .NET Micro Framework.

Internet of Things ◾ 403

Example 14.1: Hello, Embedded System!

Difficulty: *
This is a simple example of using Micro Framework. Here we assume you have downloaded and
installed .NET Micro Framework 4.3 SDK and Visual Studio 2012. The development process is the
same with Visual Studio 2010.

Note: This example is adapted from http://msdn.microsoft.com/en-us/library/ee435413.
aspx and is updated for Visual Studio 2012.

 1. In Visual Studio 2012, select the FILE→New→Project menu.
 2. In the New Project dialog, select the Visual C#→Micro Framework template in the left

panel, and select Window Application in the middle panel. Then, click on the OK button
to create the project, as show in Figure 14.1.

 3. Press F5 to launch the program. This brings up an emulator, as shown in Figure 14.2. The
emulator has five buttons and a screen, where it displays “Hello World!” Close the emulator
window to stop the program.

 4. In Solution Explorer, double click the Resources.resx file to open the project resource
editor. Select the Add Resource→New Image→BMP Image menu. Enter “helloImage” as
the new resource name, and then click on the Add button.

 5. In the image editor, create a new image. The image we chose to use is shown in Figure 14.3.
 6. Modify the Program.cs file to insert lines 9–14 from Code List 14.1. Then modify

mainWindow.Child = text to mainWindow.Child = img (line 17). By modifying the code
yourself, you can get a first-hand experience of writing an embedded code using C#. We
believe that even without any explanation, an experienced C# developer can easily understand
the code and apply the changes.

Figure 14.1 new Project dialog.

404 ◾ Zen of Cloud

Figure 14.2 Device emulator.

Figure 14.3 new image resource.

Internet of Things ◾ 405

Note: In Visual Studio 2012, bitmap resources are loaded as binary resources instead of
bitmaps. This has been reported as a bug and might be addressed in a future version.

 7. Launch the application again, and you will see updated UI as shown in Figure 14.4.

14.4.2 .NET Gadgeteer Overview
We believe that for many curious readers, playing with emulators is not enough fun. So, we are
going to introduce Microsoft .NET Gadgeteer, which allows you to play with some real hardware.
Microsoft .NET Gadgeteer is an open-source tool kit for developing small appliance prototypes
using .NET Microsoft Framework. You can purchase various hardware parts that can combine
them into small devices via standard connectors.

At the .NET Gadgeteer home page (address: http://www.netmf.com/gadgeteer/), you can find
purchase information for various hardware parts, such as mother boards, cameras, network adapt-
ers, buttons, touch screens, and SD card readers. Here, we choose to use the Fez Spider Starter Kit
from GHI Electronics. The kit is a hardware package that includes a mother board, a camera, two
buttons, a network card, a multicolor LED light, an SD card reader, and a color touch LCD screen.

Example 14.2: Simple video camera

Difficulty: ***
This example shows typical steps of .NET Gadgeteer development using Visual Studio 2012 and
Fez Spider Starter Kit. Even if you do not have the hardware, you can still get a glimpse of the

CODE LIST 14.1 MODIFIED PROGRAM.CS

 1: …
 2: Text text = new Text();
 3: text.Font = Resources.GetFont(Resources.FontResources.small);
 4: te xt.TextContent = Resources.GetString(Resources.StringResources.

String1);
 5: text.HorizontalAlignment =
 6: Microsoft.SPOT.Presentation.HorizontalAlignment.Center;
 7: te xt.VerticalAlignment = Microsoft.SPOT.Presentation.

VerticalAlignment.Center;
 8:
 9: Image img = new Image(new
10: Bitmap(Resources.GetBytes(Resources.BinaryResources.helloImage),
11: Bitmap.BitmapImageType.Bmp));
12: img.HorizontalAlignment = Microsoft.SPOT.Presentation.
13: HorizontalAlignment.Center;
14: im g.VerticalAlignment = Microsoft.SPOT.Presentation.

VerticalAlignment.Center;
15:
16: // Add the text control to the window.
17: mainWindow.Child = img;
18: …

406 ◾ Zen of Cloud

process through the detailed steps in this example. Now, let us use Fez Spider Starter Kit to build
a simple video camera.

In order to complete this example, you will need the following:

 ◾ Visual Studio 2012
 ◾ .NET Micro Framework SDK 4.3
 ◾ GHI Software Package 4.2 (you need to download from GHI Electronics’ support page after

registration)
 ◾ You should also download and run FEZ Config program to update the firmware. Before

upgrading, connect the Power/USB module to the port 1 on the motherboard, and then
connect the circuit to your computer. Next, launch FEZ Config on the computer to update
the firmware, as shown in Figure 14.5.

 1. In Visual Studio 2012, select Gadgeteer→.Net Gadgeteer Application to create a new
Gadgeteer application.

 2. On the .NET Gadget Application Wizard dialog, select FEZSpider, and click the
Create button.

 3. Once the project has been created, you will see a circuit design surface, where you can
drag and drop various parts, just as if you were designing a Windows from UI, and con-
nect them into a complete circuit. While making connections, you can directly draw
lines between part ports, and the designer will prompt you to the right ports to use as
you draw the line. An easier approach is to right-click on the design surface, and select
the Connect all modules menu to automatically connect all parts. On the design sur-
face, add the following parts:

 a. Camera (Camera)
 b. Button (Button)
 c. Display (Display_T35)
 d. USB/Power module (UsbClientDP)

 Then, use the Connect all modules menu to connect them, as shown in Figure 14.6.

Figure 14.4 Updated Ui.

Internet of Things ◾ 407

 4. Now we can start to code against the circuit. Edit the Program.cs file and enter the
lines in Code List 14.2. If you are familiar with C#, the following code should be fairly
straightforward to understand: we respond to the button pressed event to turn on/off the
camera (lines 13–29). When a frame is captured, we will send the image directly to the
display (lines 31–34). Note that to get a higher frame rate, we have created a Bitmap local
variable (line 3) to serve as a shared buffer between the camera and the display. This works
well when the camera is stationary. However, the image is distorted when the camera

USB/Power Motherboard

FEZ Spider

USB

usbClientDP

EZ Con�g

Figure 14.5 Update firmware.

display_T35
Display

Button

Button

FEZ Spider

GHIElectronics.Button

GHIElectronics.Camera

GHIElectronics.Display_T35

GHIElectronics.UsbClientDP

Camera

Camera
USB module

Motherboard

usbClientDP

Figure 14.6 Completed circuit.

408 ◾ Zen of Cloud

CODE LIST 14.2 CAMERA CONTROL PROGRAM

1: public partial class Program
2: {
3: Bitmap mBitmap;//Image buffer
4: void ProgramStarted()
5: {
6: mBitmap = new Bitmap
7: (camera.CurrentPictureResolution.Width,
8: ca mera.CurrentPictureResolution.Height);//Initial buffer to

camera view size
9: ca mera.BitmapStreamed += camera_BitmapStreamed;//Frame

captured event
10: bu tton.ButtonPressed += button_ButtonPressed;//Button pressed

event
11: bu tton.TurnLEDOff(); //Turn off LED to indicate "off"

state
12: }
13: void button_ButtonPressed(GTM.GHIElectronics.Button sender,
14: GTM.GHIElectronics.Button.ButtonState state)
15: {
16: if (button.IsLedOn) // "on" state
17: {
18: camera.StopStreamingBitmaps();//Stop streaming
19: button.TurnLEDOff();//Clear "on" state
20: }
21: else
22: {
23: if (camera.CameraReady)//Check if camera is

ready
24: {
25: ca mera.StartStreamingBitmaps(mBitmap);//

Start streaming
26: button.TurnLEDOn(); //Set "on" state
27: }
28: }
29: }
30:
31: vo id camera_BitmapStreamed(GTM.GHIElectronics.Camera sender,

Bitmap bitmap)
32: {
33: di splay_T35.SimpleGraphics.DisplayImage(mBitmap, 0,

0);//display frame
34: }
35: }

Internet of Things ◾ 409

moves. Interested readers may attempt to fix the distortion by using a double-buffer, but
probably the performance will suffer.

 5. Connect the parts as shown in Figure 14.6. Then, connect the whole circuit to the computer
via a USB.

 6. Now, it is the magical moment. In Visual Studio, press F5 to launch the program. The code
will be compiled and deployed to your device. Wait till the LED light dims. Press the but-
ton, observe the LED light turning on, and the display displaying the images captured by the
camera. Press the button again to capture a still image. Press the button once again to return
to live streaming. Figure 14.7 shows a working system.

 7. [Optional] You can also set up breakpoints in the code and experience the debugging process.
You can step through a code, watch the variable values, and examine the exception details
just as if you were debugging a regular PC application. Isn’t this convenient?

14.4.3 Device Integration Sample Scenario
A cloud service can connect separate devices together and orchestrate them into a complete, inno-
vative solution. In this section, we will introduce a sample scenario that builds a simple intruder
detection system by combining Micro Framework, Windows tablet, and Microsoft Azure Mobile
Services together. The system creates a small camera that can be hidden at a certain location in
your house. The camera captures and analyzes environmental images, and inserts a record into
a Mobile Service data table once it detects any motion. In turn, the Mobile Service notification
mechanism is triggered by the record and sends a push notification to your smart phone or tablet.
The system diagram is shown in Figure 14.8.

USB

Camera

Button
Display

Motherboard

Figure 14.7 Finished product.

410 ◾ Zen of Cloud

Although the system is simple, it is a good example of how to combine the advantages
of cloud and devices to create useful solutions. First, the system takes advantage of the rich
data acquisition capability of devices to collect environmental data. Second, the system
takes advantage of the high availability of cloud services to link different devices together.
Finally, the system uses the cloud-based push notification service to send alerts to users
regardless of their location. Now, let us study how to build such a system.

Example 14.3: Intruder detection system

Difficulty: *****
This example continues from the previous example. We use Visual Studio 2012, Fez Spider Starter
Kit from GHI Electronics, Microsoft Azure Mobile Services, and Windows Store application
to implement an intruder detection system. This example assumes that you have learned about
Microsoft Azure Mobile Services and push notifications. As the process is a bit long, I will omit
some of the steps.

 1. Continue with Example 14.2. Extend the circuit to include a network card. On the design
surface, add an ethernet_J11D component, and then connect it to the motherboard, as
shown in Figure 14.9.

 2. Then, let us implement a simple motion detection algorithm. Code List 14.3 shows the mod-
ified camera_BitmapStreamed method. The method is simple: it observes the RGB value
of the center pixel of the screen. When it sees a sudden change (lines 17 and 18), it sends an
alert. The program throttles the alerts (line 22) so that a single event (series of motions within
5 s) is not reported multiple times. Lines 36–42 display the captured images as well as the
generated alerts on the screen—this part is optional. If you would like to simplify the circuit
by eliminating the display (and display-related code), you are welcome to do so—it does not
affect the rest of the system.

 3. Next, we need to insert the alert into a Mobile Service data table. Here, we assume you have
created a standard to-do application (see Example 13.1). Before we can perform the insertion,
we need to solve three problems: syncing up system time on the embedded system; enabling
SSL on the embedded system; and authenticating with the Mobile Service. We need to do
these because Mobile Service requires HTTPS and authentication for REST API calls. It
requires a client clock to be within the allowed clock skew.

 4. First, let us enable SSL. We can deploy an SSL seed to the device using the MFDeploy
tool from the Fez Spider Starter Kit. Run c:\Program Files (x86)\ Microsoft .NET Micro
Frameworks\v4.2\Tools\MFDeploy.exe. Then, select the Target→Manage Device
Keys→UpdateSSLSeed menu, as shown in Figure 14.10.

 5. The update takes only a few seconds, as shown in Figure 14.11.
 6. Next, we will use an Internet time server to update the embedded system clock when it is

started. The code is shown in Code List 14.4.

Mobile service
data table WNS

Notifications

Windows tablets
smartphones

Alerts

Motion detectionCamera
Image

Figure 14.8 System diagram of the intruder detection system.

Internet of Things ◾ 411

Note: This code is adapted from
http://weblogs.asp.net/mschwarz/archive/2008/03/09/wrong-datetime-on-net-micro-
framework-devices.aspx, which uses a time server at time-a.nist.gov.

 7. Now, we are ready to invoke Mobile Service’s REST API to insert alerts to a Mobile Service
data table. Then, Mobile Service will push the alert as a push notification to mobile clients.
Here, we assume your data table has the name TodoItem, and its access permission is set to
Anyone with an Application Key. Note that the push notification part is omitted here. You
may refer to Example 13.3 if needed (Code List 14.5).

 8. Launch the program as well as the mobile application that accepts the push notification.
Wave your hand in front of the camera to trigger an alert, and observe the push notification
on the mobile application.

Note: You can change table access permissions on a table’s PERMISSIONS page, as shown
in Figure 14.12.

To view your application key, use the MANAGE KEYS icon on the command bar, as
shown in Figure 14.13.

Display_T35

Button

GHIElectronics.Button

Ethernet_J11D

GHIElectronics.Camera

GHIElectronics.Display_T35

GHIElectronics.UsbClientDP

Camera

GHIElectronics.Ethernet_J11D

UsbClientDP

FEZ Spider

Figure 14.9 Modified circuit.

412 ◾ Zen of Cloud

CODE LIST 14.3 SIMPLE MOTION DETECTION ALGORITHM

1: bool mFirst = true; //indicating the first pixel read
2: byte mLastR = 0;
3: byte mLastG = 0;
4: byte mLastB = 0;
5: DateTime mLastWarn = DateTime.MinValue;
6: …
7: vo id camera_BitmapStreamed(GTM.GHIElectronics.Camera sender,

Bitmap bitmap)
8: {
9: va r newColor = bitmap.GetPixel(bitmap.Width / 2, bitmap.

Height / 2);
10: var r = ColorUtility.GetRValue(newColor);
11: var g = ColorUtility.GetGValue(newColor);
12: var b = ColorUtility.GetBValue(newColor);
13: if (mFirst)
14: mF irst = false;//first pixel read, record without

analysis
15: else
16: {
17: if (System.Math.Abs(r - mLastR) + System.Math.Abs(g

- mLastG)
18: + S ystem.Math.Abs(b - mLastB) >= 100)//sudden

change
19: {
20: try
21: {
22: if ((DateTime.Now - mLastWarn).Seconds > 5)
23: {
24: mLastWarn = DateTime.Now;
25: //TODO: send alert
26: }
27: }
28: catch
29: {//TODO: handle exception
30: }
31: }
32: }
33: mLastR = r;//record last observed pixel to allow slow drifting
34: mLastB = b;
35: mLastG = g;
36: di splay_T35.SimpleGraphics.DisplayImage(mBitmap, 0, 0); //

display image
37: //optional – display the alert on screen for 5 seconds

Internet of Things ◾ 413

38: if ((DateTime.Now - mLastWarn).Seconds <= 5)
39: display_T35.SimpleGraphics.DisplayText("ALERT!",
40: Resources.GetFont(Resources.FontResources.NinaB),
41: GT.Color.Red,
42: (uint)bitmap.Width / 2, (uint)bitmap.Height / 2);
43: }

Figure 14.10 MFDeploy tool.

Figure 14.11 MFDeploy tool run result.

414 ◾ Zen of Cloud

CODE LIST 14.4 UPDATE EMBEDDED SYSTEM CLOCK

 1: void ProgramStarted()
 2: {
 3: …
 4: Utility.SetLocalTime(GetNetworkTime());
 5: }
 6: private DateTime GetNetworkTime()
 7: {
 8: IPEndPoint ep = new IPEndPoint(Dns.GetHostEntry
 9: ("time-a.nist.gov").AddressList[0], 123);
10: Socket s = new Socket(AddressFamily.InterNetwork,
11: SocketType.Dgram, ProtocolType.Udp);
12: s.Connect(ep);
13: byte[] ntpData = new byte[48]; // RFC 2030
14: ntpData[0] = 0x1B;
15: for (int i = 1; i < 48; i++)
16: ntpData[i] = 0;
17: s.Send(ntpData);
18: s.Receive(ntpData);
19: byte offsetTransmitTime = 40;
20: ulong intpart = 0;
21: ulong fractpart = 0;
22: for (int i = 0; i <= 3; i++)
23: in tpart = 256 * intpart + ntpData[offsetTransmit

Time + i];
24: for (int i = 4; i <= 7; i++)
25: fr actpart = 256 * fractpart +

ntpData[offsetTransmitTime + i];
26: ul ong milliseconds = (intpart * 1000 + (fractpart * 1000) /

0x100000000L);
27: s.Close();
28: TimeSpan timeSpan = TimeSpan.FromTicks
29: ((long)milliseconds * TimeSpan.TicksPerMillisecond);
30: DateTime dateTime = new DateTime(1900, 1, 1);
31: dateTime += timeSpan;
32: Ti meSpan offsetAmount = TimeZone.CurrentTimeZone.

GetUtcOffset(dateTime);
33: DateTime networkDateTime = (dateTime + offsetAmount);
34: Debug.Print(networkDateTime.ToString());
35: return networkDateTime;
36: }

Internet of Things ◾ 415

CODE LIST 14.5 SEND ALERTS TO MOBILE SERVICES

 1: var timestamp = DateTime.Now;
 2: string data = "{\"text\":\"Intruder at " + timestamp.Hour + ":" +
 3: ti mestamp.Minute + ":" + timestamp.Second + "\",

\"complete\":false}";
 4: byte[] bytes = System.Text.Encoding.UTF8.GetBytes(data);
 5: HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create
 6: ("h ttps://[your Mobile Service].azure-mobile.net/tables/

TodoItem");
 7: request.Method = "POST";
 8: request.Accept = "application/json";
 9: request.ContentType = "application/json";
10: request.ContentLength = bytes.Length;
11: re quest.Headers.Add("X-ZUMO-APPLICATION", "[your

application key]");
12: using (var stream = request.GetRequestStream())
13: {
14: stream.Write(bytes, 0, bytes.Length);
15: }
16: var response = request.GetResponse();
17: response.Close();

Figure 14.12 Mobile Service table access permissions.

416 ◾ Zen of Cloud

14.5 Summary
In this chapter, we provided a brief overview of IoT. Then we discussed how devices and cloud
complement each other, and how they can create powerful solutions when combined together.
Through several examples, we learned how to develop an embedded code using Microsoft
Micro Framework and .NET Gadgeteer. Finally, we worked on a scenario that combined .NET
Gadgeteer, Windows Store application, and Mobile Services to provide a complete scenario.

Figure 14.13 View application key.

iVSYSteM inteGRAtion
AnD PRoJeCt
MAnAGeMent

What is the number one benefit of cloud? Agility. Cloud allows you to go to the market faster, to
respond to market changes quicker, and to innovate at an unprecedented pace. This section of the
book discuss this pheromone from two different views. First, we discuss integration, focusing on
how to orchestrate on-premises workloads and cloud workloads together to construct complete
solutions. A flexible integration strategy allows different pieces of a large system to move at differ-
ent paces so that as you embrace the agility of the cloud you can still work with legacy systems that
are staying behind for various reasons. Then, we study how Microsoft tools and services enable
DevOps scenarios to help you to build an agile innovation team to produce next-generation cloud-
based solutions.

419

Chapter 15

Message-Based System
integration

15.1 System integration
Many enterprises, especially large and medium-sized enterprises, often have many software and
hardware solutions deployed and used at the same time. How to effectively integrate these systems
to provide streamlined workflows across the enterprise is a practical problem faced by many of
these enterprises. Many factors contribute to IT fragmentation within an enterprise. For example,
different departments may have different paces of adopting new technologies, conflicting interests,
diverse working styles, and strategies, especially when different teams originate from different
companies because of acquisitions, reorganizations, and mergers.

When a cloud service provider introduces Cloud to enterprises, it should be ready to address
the needs of integrating the new cloud services with hundreds of existing systems. It needs to pro-
vide a smooth transition path for enterprise users to adopt cloud services over time. At the same
time, when it extends existing enterprise applications to cloud, it often needs to migrate existing
systems piece by piece. So, for a considerable period of time, it will face the situation that different
parts of a bigger system work together over different environments, such as on-premise, private
cloud, community cloud, and public cloud.

Although there are many different strategies and methodologies for system integration, we can
still abstract some common rules and patterns. In this chapter, we will first introduce some com-
mon integration patterns, and then focus on how to integrate systems using message-based system
integration. Message-based integration is a strategy that is the result of tens of years of collective
experience in system integration, and has been proven to be a flexible, maintainable, and extensible
integration strategy. The majority of this chapter will focus on implementing system integration
patterns using Microsoft Azure Service Bus.

It is worth pointing out that system integration is not just a technical problem, but also a prob-
lem that involves business workflow and sometimes strategy-level changes. This book discusses
only the technical aspects of the problem.

Common system integration patterns include the following:

420 ◾ Zen of Cloud

15.1.1 Integration by Data
Integration by data means different systems are integrated by sharing the same data. This pattern
has the following common implementation methods:

 ◾ Data import/export
 Data from a system are exported in a common format, such as CSV and XML. Then, the

data are imported to another system by either automatic or manual operations. Because data
import/export happens in batches, this method does not provide real-time integration. The
downside of the method includes unreliability, inefficiency, and unresponsiveness, especially
when manual operations are involved. The upside of such methods includes simplicity, mini-
mum impact on existing systems, and flexible data transfer mechanism (including transfer-
ring data using a USB key!).

 ◾ Data replication
 Data replication automates the import/export process, so it is a much more reliable method.

Many modern databases and data services provide data replication or synchronization capa-
bilities to keep separate data repositories in sync. Data repositories participating in the rep-
lication processes can share the same schema, or have their schemas mapped via some sort
of transformation service, which is often provided by a middleware instead of the database
itself. The shared schema provides higher efficiency; however, it creates a tighter coupling
between the participating systems.

 ◾ Shared repository
 Shared repository avoids data import/export and synchronization altogether. Systems simply

access the same data repository to work together. Obviously, this method provides a simple,
real-time integration solution. However, in this case, systems are tightly coupled together. The
shared repository can easily become a system bottleneck and a Single Point of Failure (SPoF).

15.1.2 Shared Business Functions
With Shared Business Functions, some systems expose common business functions that can be
used across the enterprise. This is a common integration pattern, and many techniques have been
developed to support it. Essentially, all techniques for distributed systems and remote calls can be
leveraged to implement Shared Business Functions, such as DCOM, CORBA, JavaRMI, .NET
Remoting, Web Service, and Wep API. For the Shared Business Functions to work, systems need
to agree on addressing, contracts, and protocols. Direct communications require all participants to
be online at the same time, and their throughputs to match up. Whenever any of the addressing,
contracts, or protocols change, all related systems need to be updated to reestablish the connection.

Shared Business Functions are sometimes offered by one of the systems that participate in the
integration. However, as system integration often has impact on workflows across multiple depart-
ments, many enterprises choose to isolate these shared functions from existing systems, and to
create an independent department that is responsible for the shared functions.

15.1.3 Enterprise Service Bus
Enterprise Service Bus (ESB) consolidates the functionalities of Service-Oriented Architecture
(SOA), Enterprise Application Integration (EAI), and Message-Oriented Middleware. Instead of
focusing on an abstract definition of ESB, we can understand it from the following aspects.

Message-Based System Integration ◾ 421

 ◾ SOA
 ESB provides a candidate architecture for SOA implementations. SOA emphasizes

that systems be loosely coupled by contracts. However, SOA does not mandate the
topology of the participating systems. Roughly speaking, we can put system topologies
into three categories: Point to Point, Hub and Spoke, and Service Bus, as shown in
Figure 15.1.

 The major disadvantage of the Point-to-Point topology is maintainability. For example,
n full connected systems require a total of n(n − 1)/2 connections, while the other two
topologies only need n and n − 1 connections, respectively. The main disadvantage of the
Hub and Spoke topology is that the Hub is an SPoF of the integrated system, jeopardizing
performance and reliability of the overall system. Service Bus is a Hub and Spoke topology
as well. The main difference resides in how the Hub is constructed. With Service Bus, the
Hub is constructed by distributed, redundant services so that the availability, scalability,
and reliability of the Hub itself can be assured. This overcomes the main shortcomings of
the Hub and Spoke topology and provides a flexible, maintainable, and available integration
solution.

 ◾ Enterprise Application Integration
 ESB allows systems built on different platforms to be integrated together via common

message brokers. With ESB, the message exchange, transformation, and routing rules are
defined independently from participating systems. This is a very important characteristic, if
you think about it. With ESB, application developers can focus on applications themselves
and leave system integration details to ESB. All they need to do is to define input/output
endpoints that the applications expose. Obviously, when individual applications are devel-
oped, the exact requirements of system integration are often undefined. Instead of asking
developers to guess how the systems would be integrated in the future, it is better to hand
the integration off to a dedicated party. Furthermore, because integration rules can be main-
tained independently from loosely coupled applications, the integrated system as a whole is
more adaptive to requirement changes.

 ◾ Message-Oriented Middleware
 ESB also provides systems with a message-oriented middleware, which provides message

publishing, filtering, monitoring, auditing, and throttling. ESB provides a common message
exchange platform for all participating systems, allowing them to exchange data without
knowing any details of each other. In addition, message-oriented middleware provides capa-
bilities such as message transformation, routing, and buffering. These features allow systems
with different message formats, different throughputs, and different availabilities to work
together.

Point to point Hub and spoke Service bus

Figure 15.1 System topologies in integration.

422 ◾ Zen of Cloud

15.2 Message-Based System integration
We have given an introduction to Microsoft Azure Service Bus Queue and Topic/Subscription in
Section 8.3. In this section, we will introduce four specific integration patterns using Microsoft
Azure Service Bus. There are hundreds of message-based system integration patterns, which can-
not be covered in this book. Here we have picked the five most representative patterns that show
different characteristics of message-based integration. Interested users should consult related
books listed in the reference material at the end of this book.

15.2.1 Content-Based Routing
In many integration scenarios, messages do not follow fixed paths. For example, a message
sender may need to send messages to different business partners based on message contents.
In other words, a message sender should be able to route messages to different message receiv-
ers based on message contents. Here are some typical ways of implementing content-based
routing:

 ◾ Custom-logic router
 A custom-logic router maintains a list of all possible message recipients. It forwards messages

to different recipients based on message contents and predefined routing rules. Although
custom-logic routers have the power of supporting arbitrary routing logics, they are less
flexible and harder to maintain because they have to keep the recipient list up-to-date.
A custom-logic router pattern is depicted in Figure 15.2.

 ◾ Message filters
 With this implementation, a message sender broadcasts messages to all recipients, and the

recipients use their corresponding filters to filter out unwanted messages (see Figure 15.3).
There are two disadvantages of this approach. First, because the messages are broadcasted, a
greater number of messages flow through the system, while most of them will be eventually
discarded (filtered). Second, the message sender needs to ensure that the filters are not tam-
pered with by ill-purposed recipients to gain access to messages that are not meant for them.
However, the method also has obvious advantages. First, because there is no recipient list to
be maintained, it is easier to maintain and to extend the system. Second, the message sender
in this case defines the routing rules (filters) based on business scenarios instead of defining
the rules per recipient.

Sender Custom logic
router

Recipient 1

Recipient 2

Recipient n

Figure 15.2 Custom-logic router.

Message-Based System Integration ◾ 423

Example 15.1: Content-based message routing

Difficulty: *
In this example, three enterprises need to exchange order information with each other: Enterprise A
needs to send some orders to either Enterprise B or C, based on order values; Enterprise B is capable
of handling high-valued orders; and Enterprise C handles only smaller orders. In order to imple-
ment such integration, Enterprise A has created an Order topic, with two levels of subscriptions—
“high-valued” and “low-valued.” The high-valued subscription is assigned to Enterprise B and the
low-valued subscription is assigned to Enterprise C. Enterprises B and C are allowed to use the
subscriptions, but they do not have rights to alter the subscriptions or associated filters. This is to
ensure that each partner gets only the messages that are intended for him or her.

 1. Create a new Orders topic in your Microsoft Azure Service Bus namespace.
 2. Launch Visual Studio, and create a new Windows Console application named EnterpriseA.
 3. Add a reference to the WindowsAzure.ServiceBus NuGet package.
 4. Modify the Microsoft.ServiceBus.ConnectionString setting in App.Config to enter the

connection string for your Service Bus namespace.
 5. Add a reference to the System.Configurations assembly.
 6. Modify the Main() method of the program. The modified code is shown in Code List 15.1.
 7. Add another Windows Console application named Partner to the solution.
 8. In the Partner project, add a reference to the WindowsAzure.ServiceBus NuGet package.
 9. Modify the Main() method. The modified code is shown in Code List 15.2.
 10. Set both projects as startup projects, and then press F5 to launch the applications. Copy and

paste the secret key for Enterprise B to the receiver program, and press enter to start listen-
ing for incoming orders. In the sender program, send several orders with different values.
As shown in Figure 15.4, orders #2 and #4 went through because their values were larger or
equal to 10,000 dollars. Orders #1 and #3 were filtered because of their low values.

15.2.2 Priority Queue
Items in a priority queue are assigned with different priorities. Items with the highest priority
values are retrieved from the queue first, ahead of items with lower priorities. Although enterprises
vastly differ from each other and their businesses vary greatly, arranging work according to some
sort of priority is a very common scenario. At this point of time, Microsoft Azure Service Bus does
not have built-in support for priority queueing, but we can easily simulate a priority queue with
Topics and Subscriptions. We create a separate subscription for each priority level. When a client
checks for messages, it loops through subscriptions in the order of priorities so that high-priority
messages can be read first. This method suits only the situations where the number of priority
levels is limited. Because the architecture and code are quite similar to those of Example 15.1, we
will leave implementing a priority queue as an exercise for interested readers.

Sender Topic

Subscription 1

Subscription 2

Subscription n

Recipient 1

Recipient 2

Recipient n

Figure 15.3 Message filters.

424 ◾ Zen of Cloud

CODE LIST 15.1 MESSAGE SENDER

static void Main(string[] args)
{
 string topicName = "Orders";
 NamespaceManager nm = NamespaceManager.CreateFromConnectionString
 (ConfigurationManager.AppSettings
 ["Microsoft.ServiceBus.ConnectionString"]);
 if (nm.TopicExists(topicName))
 nm.DeleteTopic(topicName);
 TopicDescription topic = new TopicDescription(topicName);
 string keyB = SharedAccessAuthorizationRule.GenerateRandomKey();
 string keyC = SharedAccessAuthorizationRule.GenerateRandomKey();
 //Create SAS for partners
 topic.Authorization.Add(
 new SharedAccessAuthorizationRule("ForCompanyB", keyB,
 new AccessRights[] { AccessRights.Listen }));
 topic.Authorization.Add(
 new SharedAccessAuthorizationRule("ForCompanyC", keyC,
 new AccessRights[] { AccessRights.Listen }));
 nm.CreateTopic(topic);

 Console.WriteLine("Enterprise B secret key: " + keyB);
 Console.WriteLine("Enterprise C secret key: " + keyC);
 //S ubscription B accepts orders that worth greater or equal to

10,000 dolloars;
 //S ubscription C accepts orders that worth less than 10,000

dollors;
 nm.CreateSubscription(topicName, "high_value",
 ne w SqlFilter("value >= 10000")); //Filter by the value

property
 nm.CreateSubscription(topicName, "low_value",
 ne w SqlFilter("value < 10000")); //Filter by the value

property

 TopicClient client = TopicClient.CreateFromConnectionString
 (ConfigurationManager.AppSettings
 ["Microsoft.ServiceBus.ConnectionString"], topicName);
 int orderNumber = 1;
 while (true)
 {
 Co nsole.Write("Enter the amount of Order #" + orderNumber +

": ");
 string value = Console.ReadLine();
 int orderValue = 0;
 if (int.TryParse(value, out orderValue))
 {
 var message = new BrokeredMessage();
 message.Properties.Add("order_number", orderNumber);

Message-Based System Integration ◾ 425

 me ssage.Properties.Add("value", orderValue);//Define the
value property

 client.Send(message);
 Co nsole.WriteLine("Order #" + orderNumber + " has been

sent!");
 orderNumber++;
 }
 else
 {
 if (string.IsNullOrEmpty(value))
 break;
 else
 Co nsole.WriteLine("Invalid input, please try

again.");
 }
 }
}

CODE LIST 15.2 MESSAGE RECEIVER

static void Main(string[] args)
{
 Console.Write("Please enter your secret key: ");
 string key = Console.ReadLine();
 //Access the subscription using given SAS
 MessagingFactory factory = MessagingFactory.Create(
 Se rviceBusEnvironment.CreateServiceUri("sb", "[your service bus

namesapce",
 string.Empty),
 TokenProvider.CreateSharedAccessSignatureTokenProvider
 ("ForCompanyB", key));
 SubscriptionClient client = factory.CreateSubscriptionClient
 ("Orders", "high_value");
 Console.WriteLine("Waiting for messages...");
 while (true)
 {
 var message = client.Receive();
 if (message != null)
 {
 Co nsole.WriteLine(string.Format("Received Order: #{0}.

Value: {1}",
 message.Properties["order_number"],
 message.Properties["value"]));
 message.Complete(); //mark the message as complete
 }
 }
}

426 ◾ Zen of Cloud

15.2.3 Request/Response
A request/response pattern is also a common integration pattern. In many situations, a message
sender is interested not only in sending messages to a receiver, but also in receiving results. When
message-based integration is used, because message senders and receivers work asynchronously,
a message sender cannot simply wait for the results, but needs to use an additional channel for
retrieving results. A simple solution is to use two queues, one for sending messages and the other
for receiving messages, as shown in Figure 15.5.

The problem is, however, if we use a single queue to return all results, and one of the clients
stops working with a result for it is at the top of the queue, all other clients are blocked because of
the FIFO nature of the queue. On the other hand, if we use a separate queue for each client, we will
have to manage a large number of queues. Microsoft Azure Service Bus supports sessions, which
can be used to solve this problem nicely. We can create multiple sessions on the same queue, and
each client can use its own session to communicate with the server. When a client sends a message,
it can mark the message with a session id and then simply listen to the same session id for response.
When the server sends a response back, it marks the returning message with the same session id so
it can be retrieved only by the designated client.

Now let us see how this is implemented with an example.

Example 15.2: Request/response pattern

Difficulty: **
In this example, an order-processing system takes and processes orders from multiple clients. For sim-
plicity, we will use a single Windows Console application to simulate one order-processing service and
four attached clients. Each client sends order requests to the service via an order queue, and the service
returns the processing results to the client. Clients are isolated using Service Bus queue sessions.

Figure 15.4 Content-based routing example.

Client

Client

Client Server

Figure 15.5 Request/response pattern.

Message-Based System Integration ◾ 427

 1. Create a new Windows Console application.
 2. Add a reference to the WindowsAzure.ServiceBus NuGet package and a reference to the

System.Configuration assembly.
 3. Modify the Microsoft.ServiceBus.Connection setting in the App.config file to enter the

connection string to your Service Bus namespace.
 4. Modify the Main() method. You may consult the comments in Code List 15.3 for further

details.
 5. Launch the program. Figure 15.6 shows the screenshot of a sample run. The application uses

a five-column display, where the first four are for the clients and the last one is for the server.
You can read each column separately from top to bottom. As you can see, although events
from different clients are interleaved, each client communicates with the server indepen-
dently without interrupting the others.

15.2.4 Dead Letter Queue
Dead Letter Queue is for archiving messages that are not processed by a receiver under the des-
ignated time limit or other constraints. These messages are kept in the Dead Letter Queue to be
processed later by a cleaner program (see Figure 15.7). Readers should note that in this situation
the messages become invalid (such as expired, or they exceed maximum allowed failures or errors),
so they should not be directly fed to receivers anymore. During the cleaning process, the system
should extract related information from these messages for auditing, debugging, or regenerating
the messages before purging them.

Microsoft Azure Service Bus provides built-in support for dead letters in its Queues and Topics.
It supports the following ways for placing a message into a Dead Letter Queue:

 ◾ Explicit dead lettering
 A message receiver can put a message into the Dead Letter Queue by explicitly calling the

DeadLetter method on the BrokeredMessage class.
 ◾ Dead lettering by expiration

 When creating a Queue or Subscription, you can set the EnableDeadLettering
OnMessageExpiration property to true on the corresponding entity description. This
enables expired messages to be automatically put into the Dead Letter Queue.

 ◾ Dead lettering after maximum number of deliveries
 A message is put into the Dead Letter Queue once it exceeds the maximum number of

deliveries.
 ◾ Dead lettering by filter exceptions

 For a Subscription, if the EnableDeadLetteringOnFilterEvaluationException property
of its corresponding SubscriptionDescription is true, then the message is put into the Dead
Letter Queue when a filter throws an exception.

Now let us see an example of using a Dead Letter Queue.

Example 15.3: Dead Letter Queue

Difficulty: *
In this example, we will write a simple demo program. First, we will simulate a message sender who
sends 10 messages to a message queue. Then, we will simulate a receiver receiving and processing
these messages. The receiver will deliberately put every other message into a Dead Letter Queue.
Finally, we will simulate a cleaner who goes through the Dead Letter Queue for dead letters.

428 ◾ Zen of Cloud

CODE LIST 15.3 REQUEST/RESPONSE PATTERN

static void Main(string[] args)
{
 string requestQueue = "requestQueue";//request queue
 string responseQueue = "responseQueue";//response queue
 string connString = ConfigurationManager.AppSettings
 ["Microsoft.ServiceBus.ConnectionString"];
 object padLock = new object();
 ConsoleColor[] colors = new ConsoleColor[] {
 ConsoleColor.Green, ConsoleColor.Cyan,
 Co nsoleColor.Red, ConsoleColor.Yellow }; //identiy

clients with
 //different colors
 Na mespaceManager nm = NamespaceManager.CreateFromConnection

String(connString);
 if (nm.QueueExists(requestQueue))
 nm.DeleteQueue(requestQueue);
 if (nm.QueueExists(responseQueue))
 nm.DeleteQueue(responseQueue);
 //the request queue doesn't need session support
 nm.CreateQueue(new QueueDescription(requestQueue));
 //the response queue requires sessions
 nm .CreateQueue(new QueueDescription(responseQueue) {

RequiresSession = true });
 //spawn 4 threads to simulate 4 clients
 for (int i = 0; i < 4; i++)
 {
 ThreadPool.QueueUserWorkItem((o) =>
 {
 Qu eueClient sender = QueueClient.

CreateFromConnectionString
 (connString, requestQueue);
 Qu eueClient receiver = QueueClient.

CreateFromConnectionString
 (connString, responseQueue);
 //create reception session
 va r session = receiver.AcceptMessageSession

(o.ToString());
 for (int j = 0; j < 5; j++)
 {
 lock (padLock)
 {
 Console.ForegroundColor = colors[(int)o];
 Co nsole.WriteLine(string.Format("{0} Sending

Order #{1}.",
 new string('\t', (int)o), j));
 }
 //send order message
 sender.Send(new BrokeredMessage

Message-Based System Integration ◾ 429

 {
 ReplyToSessionId = o.ToString(),//mark session id
 MessageId = j.ToString()
 });
 va r message = session.Receive();//receive result on

session
 if (message != null)
 {
 lock (padLock)
 {
 Console.ForegroundColor = colors[(int)o];
 Console.WriteLine(string.Format
 ("{0} Order #{1} Processed.",
 ne w string('\t', (int)o), message.

MessageId));
 }
 message.Complete();
 }
 }
 }, i);
 }
 //start server thread
 ThreadPool.QueueUserWorkItem((o) =>
 {
 QueueClient receiver = QueueClient.CreateFromConnectionString
 (connString, requestQueue);
 QueueClient sender = QueueClient.CreateFromConnectionString
 (connString, responseQueue);
 while (true)
 {
 var message = receiver.Receive();//receive order
 if (message != null)
 {
 //send returning message
 sender.Send(new BrokeredMessage
 {
 Se ssionId = message.ReplyToSessionId,//mark

session id
 MessageId = message.MessageId
 });
 lock (padLock)
 {
 Console.ForegroundColor = ConsoleColor.White;
 Console.WriteLine(string.Format
 ("{0} Processing Order #{2} from Client {1}",
 ne w string('\t', 4), message.

ReplyToSessionId,
 message.MessageId));
 }

430 ◾ Zen of Cloud

 1. Create a new Windows Console application.
 2. Add a reference to the WindowsAzure.ServiceBus NuGet package and a reference to the

System.Configuration assembly.
 3. Modify the Microsoft.ServiceBus.ConnectionString setting in the App.config file to

enter the connection string to your Service Bus namespace.
 4. Modify the Main() method. For details, you may see the comments in Code List 15.4.
 5. Launch the program and observe the Dead Letter Queue at work, as shown in Figure 15.8.

15.2.5 Event-Driven Consumer
When participating in message exchange using a Queue or a Topic/Queue, a message receiver
often periodically polls the corresponding messaging entity for new messages. This is the method
we have used in all previous examples. Such consumers who periodically poll for messages are

 message.Complete();
 }
 }
 });
 Console.ReadLine();
}

Figure 15.6 Request/response pattern example.

Sender Queue Receiver

Dead letter queue

Figure 15.7 Dead Letter pattern.

Message-Based System Integration ◾ 431

CODE LIST 15.4 DEAD LETTER QUEUE DEMO

static void Main(string[] args)
{
 string connString = ConfigurationManager.AppSettings
 ["Microsoft.ServiceBus.ConnectionString"];
 string queueName = "samplequeue";
 NamespaceManager nm = NamespaceManager.CreateFromConnectionString
 (connString);
 if (nm.QueueExists(queueName))
 nm.DeleteQueue(queueName);
 nm.CreateQueue(queueName);
 //Simulate a message sender sending 10 messages
 QueueClient sender = QueueClient.CreateFromConnectionString
 (connString, queueName);
 for (int i = 0; i < 10; i++)
 se nder.Send(new BrokeredMessage { MessageId =

i.ToString() });
 //Simulate a message receiver
 QueueClient receiver = QueueClient.CreateFromConnectionString
 (connString, queueName);
 for (int i = 0; i < 10; i++)
 {
 var message = receiver.Receive();
 if (message != null)
 {
 if (i % 2 == 0)
 {
 Co nsole.WriteLine(string.Format("Message {0} is

processed.",
 message.MessageId));
 message.Complete();
 }
 else
 {
 //Add every other message to the dead letter queue,
 // and provide a text scription of the reason of dead

lettering.
 me ssage.DeadLetter("Unprocessed", "Dead letter queue

test.");
 }
 }
 }
 // Simulate a cleaner to clean up the dead letter queue. Note

QueueClient
 // provides a FormatDeadLetterPath method which helps to find the

corresponding
 //dead letter queue of a Service Bus queue.

432 ◾ Zen of Cloud

called Polling Consumers. A Polling Consumer runs a continuous loop, which works fine with a
backend program. However, for a client application that often uses event-driven programming,
the continuous polling does not fit in very well. The so-called event-driven Consumers do not poll
for changes. Instead, they register callbacks with the corresponding messaging entities and wait
for the callbacks to be invoked, as shown in Figure 15.9.

Next, let us see this pattern in action with an example.

Example 15.4: Event-Driven Consumer

Difficulty: *
In this example, we will write a simple WPF client, which acts as both a message sender and a
message receiver. A user can click on the “Send” button on the UI to send a message, and observe
messages appearing on the screen when new message events are triggered.

 Qu eueClient deadLetterClient = QueueClient.
CreateFromConnectionString

 (connString, QueueClient.FormatDeadLetterPath(queueName),
 ReceiveMode.ReceiveAndDelete);
 BrokeredMessage deadLetter;
 while ((deadLetter = deadLetterClient.Receive()) != null)
 {
 Console.WriteLine(
 st ring.Format("Retrieved message {0} from the dead

letter queue.",
 deadLetter.MessageId));
 Console.WriteLine(
 st ring.Format(" Message {0} is dead-lettered

because of: {1}",
 deadLetter.MessageId,
 deadLetter.Properties["DeadLetterErrorDescription"]));
 }
}

Figure 15.8 Dead Letter Queue demo.

Message-Based System Integration ◾ 433

 1. Create a new WPF application.
 2. Add a reference to the WindowsAzure.ServiceBus NuGet package.
 3. Modify the MainWindow.xaml file to implement a simple messaging UI:

<Window x:Class="Example15.4.MainWindow"
 xm lns="http://schemas.microsoft.com/winfx/2006/xaml/

presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525" FontSize="18">
 <StackPanel>
 <DockPanel HorizontalAlignment="Stretch">
 <TextBlock Margin="5">Message:</TextBlock>
 <B utton Margin="5" x:Name="sendMessage" DockPanel.

Dock="Right"
 Click="sendMessage_Click_1">Send</Button>
 <TextBox x:Name="messageText" Margin="5"/>
 </DockPanel>
 <ListBox x:Name="messageList" />
 </StackPanel>
</Window>

 4. Modify the MainWindow.xaml.cs file. Lines 18–25 in Code List 15.5 listen to queue events
and add corresponding messages to the display list. Specifically, the MaxConcurrentCalls
parameter in line 25 specifies how many concurrent calls can be made on the callback. If this
value is larger than 1, then the callback function may be concurrently called multiple times
when many messages arrive at the same time.

 5. Press F5 to launch the program. Send several messages to add them to the display list, as
shown in Figure 15.10.

15.3 Advanced Message Queuing Protocol
Traditionally, most middleware uses proprietary protocols and private formats, which lead to vari-
ous interoperability issues. Nowadays, more and more software vendors and service providers are
taking a more open approach by creating and supporting common standards. Advanced Message
Queuing Protocol (AMQP) is an open protocol for message-based middleware. It defines a com-
mon standard for enterprises to exchange data safely, reliably, and efficiently.

AMQP was conceived by JPMorgan Chase in 2003. The purpose of the stand is primarily to
facilitate exchange of financial data. Soon, many famous enterprises, such as Bank of America,
Goldman Sachs, Microsoft, Cisco, and Red Hat, joined the effort to define and promote the pro-
tocol. In August 2011, AMQP workgroup became a formal member of OASIS. OASIS released

Sender Queue

Client

Event-driven
consumer

Callback

Figure 15.9 event-driven consumer pattern.

434 ◾ Zen of Cloud

AMQP 1.0 in 2012. We will provide a brief overview in the next section. Interested readers who want
to know further details about the protocol may visit MSQP’s official site at http://www.amqp.org.

15.3.1 AMQP Overview
AMQP is defined in several different layers, including a type system, a transportation layer, a mes-
saging layer, a transaction layer, and a security layer.

CODE LIST 15.5 MESSAGE SEND/RECEIVE LOGIC

 1: public partial class MainWindow : Window
 2: {
 3: public MainWindow()
 4: {
 5: InitializeComponent();
 6: //recreate the queue
 7: Na mespaceManager nm = NamespaceManager.

CreateFromConnectionString
 8: (connString);
 9: if (nm.QueueExists(queueName))
10: nm.DeleteQueue(queueName);
11: nm.CreateQueue(queueName);
12: //create sender and receiver
13: mSender = QueueClient.CreateFromConnectionString
14: (connString, queueName);
15: mReceiver = QueueClient.CreateFromConnectionString
16: (connString, queueName);
17: //listen to queue events
18: mSender.OnMessage((m) =>
19: {
20: messageList.Dispatcher.Invoke(() =>
21: {
22: messageList.Items.Add(string.Format("{0}: {1}",
23: m.SequenceNumber, m.GetBody<string>()));
24: });
25: }, new OnMessageOptions { MaxConcurrentCalls = 1 });
26: }
27:
28: const string connString = "<Service Bus connection string>";
29: const string queueName = "<queue name>";
30: QueueClient mSender, mReceiver;
31:
32: pr ivate void sendMessage_Click_1(object sender,

RoutedEventArgs e)
33: {
34: mSender.Send(new BrokeredMessage(messageText.Text));
35: messageText.Text = "";
36: }
37: }

Message-Based System Integration ◾ 435

 ◾ Type system
 In order to facilitate exchange of data from different technology platforms, AMQP defines

a unified type system. The type system defines common basic types such as Booleans, byte,
long, and strings. In addition, AMQP allows you to map custom types to basic types by
attaching descriptors on types. AMQP message data are encoded as byte series, prefixed
with constructors.

 ◾ Transportation layer
 The AMQP link layer is made up of nodes and links. Nodes are entities that send/revive or

store messages, including senders, receivers, and message queues. Links are data channels
among nodes. Links are connected to nodes by source terminuses and target terminuses.
Nodes are hosted in containers. A container can host multiple nodes. For example, a client
program can be viewed as a container, which includes several sender nodes and receiver
nodes.

 AMQP transportation layer defines point-to-point connections between nodes. AMQP
containers exchange data via connections, which are comprised of duplex, ordered frames.
An AMQP channel can be segmented into multiple unidirectional channels. Every frame on
a channel is tagged with a channel number and a sequence number. The combination of the
channel number and the sequence number uniquely identifies a frame. AMQP requires that
when a frame with sequence n arrives, all frames with sequence numbers less than n must
have already arrived.

 ◾ Messaging layer
 The messaging layer defines message formats, message transmission statuses, node sta-

tuses, as well as the description of message sources and message destinations. Messages are
immutable in AMQP. However, information can be attached to messages during transmis-
sions. Messages contain headers, which define transmission requirements such as priority,

Figure 15.10 event-driven consumer demo.

436 ◾ Zen of Cloud

persistence, expiration, and the number of deliveries. In addition, AMQP messages support
a series of built-in properties and application-defined properties (which are limited to basic-
type properties identified by string keys). Message transmission intermediaries can leverage
these properties to filter or route messages. The message layer also defines message transmis-
sion statuses, such as received, rejected, released (message is not and will not be processed),
modified (message is modified but unprocessed), or delivered.

 ◾ Transaction layer
 The transaction layer combines multiple message transmissions in transactions. AMQP

supports typical transactional operations such as commits and rollbacks. Note that
AMQP 1.0 does not specify how distributed transactions are supported. In this version
of the standard, all operations with a transaction are carried out by a single transactional
resource.

 ◾ Security layer
 The security layer is used to define security measures such as authentication, data encryp-

tion, and support for TLS and SASL.

15.3.2 AMQP Adoption
AMQP has gained wide adoption in the industry. An increasing number of systems have added
support for AMQP, including Apache Qpid, Microsoft Microsoft Azure Service Bus, VMWare
RabbitQM, Storm MQ, JORAM, Red Hat enterprise MRG, and Fedora AMQPI. Among these
systems, Apache Qpid is a cross-platform AMQP system, which provides C++ and Java-based
message brokers as well as APIs for various programming languages such as C++, Java JMS, .Net,
Python, and Ruby. Microsoft Microsoft Azure Service Bus has included built-in AMQP support
as well.

Now let us learn how to use AMQP with an example.

Example 15.5: System integration using AMQP

Difficulty: ****
This example is constructed using both .Net and Java. On the .Net side, we will use the Microsoft
Azure Service Bus Client NuGet package to create a simple console application for receiving
orders sent via AMQP. On the Java side, we will use JMS and Apache Qpid to send orders using
AMQP.

Note: In this example, we choose to use Google’s ADT Bundle for Windows as the Java
IDE, and the steps are based on this IDE. Of course, you can pick the standard Eclipse or
other Java IDEs.

This example consists of three parts. First, let us prepare the Apache Qpid development environment.
Part 1: Prepare Apache Qpid environment
At the time of writing this book, Apache Qpid is still in RC state. You can go to the address http://
people.apache.org/~rgodfrey/qpid-java-amqp-1-0-client-jms.html to get the link to download the

Message-Based System Integration ◾ 437

latest version. You will need to download the following .jar files. Save the downloaded files to a local
folder. In this example, we will use c:\java\amqp.

geronimo-jms_1.1_spec-1.0.jar
qpid-amqp-1-0-client-[version].jar
qpid-amqp-1-0-client-jms-[version].jar
qpid-ampq-1-0-common-[version].jar
In this example, we use the 0.22-RC5 version.

Part 2: Create the Java order sender

 1. In Eclipse, create a new Java project named AMQPOrderSender. When creating the proj-
ect, add references to the previous Apache Qpid .jar files (or manually add paths to these .jar
files to CLASSPATH), as shown in Figure 15.11.

 2. On the same dialog, select the Order and Export tab, and then select all referenced .jar files,
as shown in Figure 15.12.

Figure 15.11 Referencing Apache Qpid .jar files.

Figure 15.12 order of class paths.

438 ◾ Zen of Cloud

 3. Add a servicebus.properties file under the project’s root folder. You will need to replace
<user> and <secret key> with your Service Bus connection information. Note that the secret
key is expected to be HTTPURL encoded. For example, the equal sign (=) needs to be
encoded as %3D.

connectionfactory.SBCF = amqps://<user>:<secret key>@<Service Bus
namespace>.servicebus.windows.net
queue.QUEUE = <Service Bus queue>

 4. Add a new AMQPOrderSender class under the src folder. Although the following code is a
bit long, it is not hard to understand. You may refer to the comments in Code List 15.6 for
further details.

Part 3: Create the .Net order receiver

 1. Create a new Windows console application.
 2. Add a reference to the WindowsAzure.ServiceBus NuGet package and a reference to the

System.Configuration assembly.
 3. Modify the Microsoft.ServiceBus.ConnectionString setting in App.config to enter your

Service Bus namespace connection string. We need to postfix “;TransportType = Amqp” to
the connection string to indicate that we will use AMQP in this case.

 4. Modify the Program.cs file. The core of Code List 15.7 is the AMQPOrderReceiver class.
The constructor of these calls creates a listener thread to listen for new order messages. As
you can see, other than the slight differences during initialization, the code looks the same
as “regular” Service Bus code when the proprietary protocol is used.

Part 4: System test

 1. Launch the .Net receiver.
 2. Launch the Java sender.
 3. On Java output view, enter the name of the item to be purchased (such as Socks). The system

generates a random price (the screenshot shows that the system tries to rip you off by charg-
ing $65 for a pair of socks), and asks how many you want to buy. Enter a quantity, and press
the Enter key to send the order. Once the order is sent, you can observe the $80,000 order
for socks on the .Net window, as shown in Figure 15.13.

15.4 Advantages of Message-Based integration
Before concluding this chapter, let us summarize the advantages of message-based integration.

15.4.1 Loose Coupling
Loose coupling is one of the main characteristics of message-based integration. The middleware
eliminates any direct links among integrated systems, allowing the systems using different plat-
forms, protocols, and formats to communicate with each other without knowing any details of
other systems. In the previous example, we achieved communications between a Java program and

Message-Based System Integration ◾ 439

CODE LIST 15.6 AMQP JAVA SENDER

 1: import java.io.BufferedReader;
 2: import java.io.InputStreamReader;
 3: import java.util.Random;
 4: import java.util.Hashtable;
 5: import javax.jms.*;
 6: import javax.naming.Context;
 7: import javax.naming.InitialContext;
 8:
 9: publicclass AMQPOrderSender {
10:
11: private Session session;
12: private Connection connection;
13: private MessageProducer sender;
14:
15: public AMQPOrderSender() throws Exception{
16: //configure JNDI environment
17: Ha shtable<String,String> env = new Hashtable<String,

String>();
18: env.put(Context.INITIAL_CONTEXT_FACTORY,
19: "org.apache.qpid.amqp_1_0.jms.jndi.
20: Pr opertiesFileInitialContextFactory");//Note:

18-19 is one line
21: env.put(Context.PROVIDER_URL, "servicebus.properties");
22: Context context = new InitialContext(env);
23: ConnectionFactory factory =
24: (ConnectionFactory)context.lookup("SBCF");
25: De stination queue = (Destination)context.

lookup("QUEUE");
26: //create connection
27: connection = factory.createConnection();
28: session = connection.createSession(false,
29: Session.AUTO_ACKNOWLEDGE);
30: se nder = session.createProducer(queue);//create sender

node
31: }
32: privatevoid close() throws JMSException{
33: connection.close();
34: }
35: privatevoid sendMessage(String item, double price, int units)
36: throws JMSException{
37: double total = price * units;
38: TextMessage message = session.createTextMessage();
39: message.setText(item);//set message content
40: me ssage.setDoubleProperty("Price", price);//add message

properties
41: message.setIntProperty("Units", units);

440 ◾ Zen of Cloud

42: message.setDoubleProperty("Total", total);
43: sender.send(message);
44: System.out.println("Sent order!");
45: System.out.println("======================");
46: System.out.println("Order for " + item);
47: System.out.println("----------------------");
48: System.out.format("Price : $%,10.2f%n", price);
49: System.out.format("Quantity: %11d%n", units);
50: System.out.format("Total : $%,10.2f%n", total);
51: System.out.println("======================");
52: }
53: publicstaticvoid main(String[] args) {
54: try
55: {
56: AMQPOrderSender sender = new AMQPOrderSender();
57:
58: Bu fferedReader cmdLine = new java.io.

BufferedReader
59: (new InputStreamReader(System.in));
60: while(true){
61: System.out.print("Enter Item Name: ");
62: String item = cmdLine.readLine();
63: if (item.equalsIgnoreCase("exit")){
64: sender.close();
65: System.exit(0);
66: }
67: // generate random price, then ask user for

quantity
68: Random rand = new Random();
69: do uble price = Math.ceil(rand.

nextDouble()*10000)/100;
70: Sy stem.out.format("Item %s is sold at

$%.2f in our store.
71: Ho w many do you want to buy? ",

item, price);
72: String userUnits = cmdLine.readLine();
73: int units = 0;
74: try
75: {
76: un its = Integer.

parseInt(userUnits);
77: } catch (NumberFormatException exp){
78: Sy stem.out.println("Invalid number

format.
79: Units have to be integers.");
80: continue;
81: }
82: //Send message
83: sender.sendMessage(item, price, units);

Message-Based System Integration ◾ 441

a .Net program. If we switched any party in a Python program, it will not impact the other party,
and this switch can occur while the other program is still in operation.

15.4.2 Dynamic Extension
Messaging middleware creates a common communication platform for participating systems. The
communication pattern is similar to what is in an online chat room, where people can come and
go, but the conversation goes on. With message-based integration, new systems can be joined, and
old systems can be removed at any time without affecting other participating systems. For a new
system to be joined, it only needs to be linked to the middleware in order to communicate with
any of the systems. This is obviously much more convenient than creating connections to many
systems. Dynamic extension also allows monitors and auditors to be dynamically attached and
removed as needed.

15.4.3 Asynchronous Communication
With message-based integration, systems communicate with each other asynchronously. Message
senders and receivers can work at their own pace without having to keep up with each other. The
messaging middleware serves as a buffer between different systems so that when their throughputs
do not match up, they can still work with each other. The extreme form of buffering is the batch
mode. Message senders and message receivers do not need to be online at the same time, but they
can still exchange data via the buffer.

By leveraging both dynamic extension and asynchronous communication, system administra-
tors can dynamically adjust system capacity based on the actual system workload. For example,
when an administrator observes that a job queue is becoming too long, he or she can launch addi-
tional job processors to drain the queue. On the contrary, he can turn off excessive processors to
save cost while the system is not busy.

15.4.4 Centralized Management
While all systems communicate over a centralized middleware, system administrators can gain
insight into the whole system through the central point. For example, as a message flows from
system to system, an administrator can track its trail through the message system without needing
to collect information of each of the participating systems.

84: }
85:
86: } catch (Exception e){
87: e.printStackTrace();
88: }
89: }
90:}

442 ◾ Zen of Cloud

CODE LIST 15.7 AMQP .NET RECEIVER

 1: using Microsoft.ServiceBus.Messaging;
 2: using System;
 3: using System.Configuration;
 4: using System.Threading;
 5: using System.Threading.Tasks;
 6: namespace AMQPOrderReceiver
 7: {
 8: class AMQPOrderReceiver
 9: {
10: private Thread mListenerThread;
11: private bool mListen = false;
12: pu blic AMQPOrderReceiver(string connString, string

entityName)
13: {
14: mListenerThread = new Thread(
15: new ThreadStart(()=>
16: {
17: var factory = MessagingFactory.
18: Cr eateFromConnectionString

(connString);
19: var receiver = factory.
20: CreateMessageReceiver(entityName);
21: while (mListen)
22: {
23: Br okeredMessage order = receiver.

Receive
24: (new TimeSpan(0, 0, 5));
25: if (order != null)
26: {
27: st ring item = order.

GetBody<string>();
28: Co nsole.WriteLine("Received

order!");
29: Co nsole.

WriteLine("===============");
30: Co nsole.WriteLine("Order for " +

item);
31: Co nsole.

WriteLine("---------------");
32: Console.WriteLine(string.Format
33: ("P rice :

${0,10:#,###.00}",
34: (do uble)order.

Properties["Price"]));
35: Console.WriteLine(string.Format

Message-Based System Integration ◾ 443

Message-based integration is the result of collective integration experiences, and it has been
showing its power in various industries and applications. Microsoft has just launched BizTalk
Service on Microsoft Azure. BizTalk Service brings Microsoft’s BizTalk Server to cloud and pro-
vides all essential characteristics of a robust middleware, including availability, reliability, and
scalability. It is foreseeable that BizTalk Service will become a powerful tool for system integration
in the future.

36: ("Quantity: {0,11}",
37: (in t)order.

Properties["Units"]));
38: Console.WriteLine(string.Format
39: ("T otal :

${0,10:#,###.00}",
40: (do uble)order.

Properties["Total"]));
41: Co nsole.

WriteLine("================");
42: order.Complete();
43: }
44: else
45: Console.Write(".");
46: }
47: }));
48: mListen = true;
49: mListenerThread.Start();
50: }
51: public void Close()
52: {
53: mListen = false;
54: mListenerThread.Join();
55: }
56: }
57: class Program
58: {
59: static void Main(string[] args)
60: {
61: string connString = ConfigurationManager.AppSettings
62: ["Microsoft.ServiceBus.ConnectionString"];
63: st ring entityName = ConfigurationManager.

AppSettings["EntityName"];
64: AMQPOrderReceiver receiver = new AMQPOrderReceiver
65: (connString, entityName);
66: Console.WriteLine("Waiting for orders");
67: Console.ReadLine();
68: }
69: }
70: }

444 ◾ Zen of Cloud

15.5 Summary
In this chapter, we introduced basic concepts, patterns, and techniques in system integration.
Including the Competing Consumer pattern that we introduced in Chapter 9, we have covered
six typical patterns in system integration: Competing Consumer, Content-based Routing, Priority
Queue, Request/Response, Dead Letter Queue, and event-driven consumer. We also introduced
AMQP with an example that integrates a Java application and a .Net application. Finally, we sum-
marized characteristics of message-based integration.

Figure 15.13 AMQP-based ordering system.

445

Chapter 16

Source Control and tests
with Visual Studio online

As the software industry evolves, the complexity of software and services keeps increasing, far
beyond the capability of a single developer. For most projects, the efficiency of teamwork directly
decides the outcome of the projects. A cloud service development team needs not only integrated
development tools such as Microsoft Visual Studio but also effective project management tools
and testing tools. Furthermore, it is highly desirable that these tools are integrated with each other
so that the team can seamlessly manage the whole product lifecycle, from product management to
design, to development, to test and release management.

In November 2013, Microsoft announced the launch of Visual Studio 2013, .NET 4.5.1, and
the new Visual Studio Online. Visual Studio Online consists of a rich collection of developer
services, including the following:

 ◾ Source control and project management services. These services were part of the Team
Foundation Service and are now integrated as part of Visual Studio Online.

 ◾ Visual Studio Online Application Insights service. This service provides a complete view of
your applications’ health, based on their availability, performance, and usage data.

 ◾ Cloud-based coding environment. This is an online editor that completes a “pure” online
project development, management, and operation experience for certain Microsoft Azure
development scenarios.

Visual Studio Online provides many exciting features to be explored. In this chapter, we will focus
on the Microsoft Team Foundation Service equivalences and demonstrate how you can lever-
age these services to manage your project and source code as well as conducting tests in a team
environment.

446 ◾ Zen of Cloud

16.1 Create a Visual Studio online Account
Visual Studio Online, formerly Team Foundation Service (TFS), provides a comprehensive solu-
tion for managing the whole software lifecycle, from project plan and management to source
control and continuous integration. You can do everything online if you choose to, or you can
leverage the deep integration with Visual Studio to collect your developer desktops into an organic
team environment. At the time of writing this book, Visual Studio Online provides a free five-user
plan. If you are already an MSDN subscriber, you can join projects at no additional charge. Or,
you can visit the following address to create a new account:
http://www.visualstudio.com.
Look for a “Get Started for free” link, or pick the subscription levels you want to use to get started.
The creation process is very easy. After you log in using a Microsoft Account, you will see an
account creation page that looks similar to Figure 16.1.

Account creation only takes a few seconds, and then you are ready to create your first project
on cloud (see Figure 16.2)—saying agility of cloud!

16.2 Source Control with Visual Studio online
In this section, we learn the general process of source control using Visual Studio Online. An
efficient source control system is essential for a productive development team. Although different
teams may have different preferences and different ways of managing source code, some general
good practices can be abstracted:

 ◾ Isolated check-ins.
 Developers should make best attempts to isolate each check-in to a single specific bug fix

or a single feature implementation. This practice ensures that when a check-in needs to

Figure 16.1 Create a free Visual Studio online account.

Source Control and Tests with Visual Studio Online ◾ 447

be rejected or rolled back, it will not affect other bug fixes or features. In addition, when
a big fix is associated with a work item, the corresponding work item should be marked
accordingly.

 ◾ Retain a separate branch/tag for every release.
 When a version is released, the corresponding source should be explicitly branched or tagged.

This will be the baseline of hotfixes and patches for the specific version. The fixes should be
selectively merged into the main branch after review.

 ◾ Use the source control system to keep modification history.
 Before source control systems were widely adopted, programmers used to keep modification

histories by commenting out the old code. Indeed, this was once considered a good prac-
tice. Such manual recording of history is no longer necessary with a modern source control
system, which gives you not only the history, but also the capabilities to compare and merge
changes. Many developers, especially those who have been coding for a long time, need to
break away from the old custom and leverage the source control system to retain history
records.

Next, let us go through the general steps of source control with an example.

Figure 16.2 Created Visual Studio online account.

448 ◾ Zen of Cloud

Example 16.1: Source Control with Visual Studio Online

Difficulty: **

 1. Sign in to the Visual Studio Online site. If you have not created a project yet, you will see a
page as shown in Figure 16.2, where you can directly create a new project. To create more
projects after the first, look for the Recent projects and teams section, and click the New
link, as shown in Figure 16.3.

 2. On the CREATE NEW TEAM PROJECT dialog, enter project Name and Description.
Pick a Process template you want to use and a Version control engine (Team Foundation
Version Control or Git). Then, click the Create Project button, as shown in Figure 16.4.

 3. After the project has been created, click the Navigate to Project button.
 4. Then, you can click the Open new instance of Visual Studio link to launch Visual Studio

(as shown in Figure 16.5). However, if you plan to use the Azure Compute Emulator, you will
need to launch Visual Studio as an administrator. So we will not use the link here.

Figure 16.3 Create a new tFS project.

Figure 16.4 new team project dialog.

Source Control and Tests with Visual Studio Online ◾ 449

 5. Launch Visual Studio 2013 (Ultimate version) as an administrator. Then, select the
TEAM→Connect to Team Foundation Server menu.

 6. On the Connect to Team Foundation Server dialog, click on the Servers button (if you do
not see the dialog after selecting the menu, look for a Select Team Projects link on Team
Explorer).

 7. On the Add/Remove Team Foundation Server dialog, click the Add button.
 8. On the dialog, enter the URL of your Visual Studio Online subscription, and then click the

OK button, as shown in Figure 16.6.
 9. The system will prompt you to sign in using your Microsoft account. After logging in, go

back to the Add/Remove Team Foundation Server dialog, and click the Close button.
 10. Back on the Connect to Team Foundation Server dialog, select your project, and then click

the Connect button, as shown in Figure 16.7.
 11. After the connection has been established, the Team Explorer will open, allowing access to

various Visual Studio Online functionalities, as shown in Figure 16.8.

Figure 16.6 Add a tFS server.

Figure 16.5 Link to launch Visual Studio.

450 ◾ Zen of Cloud

Figure 16.7 Connect to a tFS project.

Figure 16.8 team explorer.

Source Control and Tests with Visual Studio Online ◾ 451

 12. In Visual Studio, create a new cloud service with a single ASP.NET Web Role (using the
MVC template).

 13. In Solution Explorer, right-click the solution and select the Add Solution to Source
Control menu.

 14. On the Choose Source Control dialog, select Team Foundation Version Control or Git.
Here, we will choose Team Foundation Version Control.

 15. On the Add Solution [your solution] to Source Control dialog, click the OK button
to continue (see Figure 16.9). You can optionally enter a different solution folder on this
dialog.

 16. When you are ready to effect changes, right-click the solution and select the Check In
menu.

 17. In Team Explorer, enter a comment for your check-in, and then click the Check In button,
as shown in Figure 16.10.

 18. On Check-in Confirmation dialog, click Yes to continue.
 19. Once the check-in is completed, go to the Team Explorer. Click on the Home button, and

then click on the Source Control Explorer link to open the Source Control Explorer, as
shown in Figure 16.11.

 20. As your code has been preserved on TFS, you can use the Source Control Explorer to check-
out/check-in the code, to create and merge branches, or to view histories. For example, in
Figure 16.12, my edit of HomeController is automatically picked up by the Source Control
Explorer.

 21. Right-click the modified file, and select the Compare menu.
 22. On the Compare dialog, click the OK button to continue. You can see that the differences

between the versions are highlighted, and you can navigate through all the changes by using
the scroll bar to the right of the window, as shown in Figure 16.13.

Figure 16.9 Add project to source control.

452 ◾ Zen of Cloud

16.3 Create and Use Unit tests
What is the purpose of writing unit tests? Many developers believe that writing unit tests is ensur-
ing code quality. However, to me this idea is a paradox—if a developer cannot write high-quality
code, how can we expect him or her to write high-quality unit tests to improve upon the code?
I believe the real value of unit tests resides in two areas: for use as a design tool, and for use as an
effective tool to capture and reinforce design decisions.

 ◾ Unit tests as a design tool
 Unit tests are a very good tool for designing new functions and APIs. By writing the unit test

code first, a developer can examine the API design from a consumer’s perspective. This helps

Figure 16.10 Check in source code.

Figure 16.11 open Source Control explorer.

Source Control and Tests with Visual Studio Online ◾ 453

the developer design clearer, more concise, and easy-to-use interfaces. This is the essence of
the Test-Driven Development (TDD) process, which has proven to be very effective, espe-
cially in framework developments.

 ◾ Unit tests as a design document
 Unit tests capture the original intentions of system architects. Design documents in text

are lifeless and are easily forgotten. However, unit test projects are alive and can proactively
inform developers if they were deviating from the original design. Such checks can be auto-
mated by integrating unit tests as part of the continuous integration process. The ability to
capture and reinforce system design in this way is extremely important. Nowadays, mem-
bers of development teams constantly change, and often there is not enough time to ramp
up new members as they join. Without these unit tests, the original design is eventually lost,
and the system architecture becomes murky over time. In other words, unit tests are the best
architecture documents you can rely on.

Figure 16.12 Source Control explorer.

Figure 16.13 Compare source code versions.

454 ◾ Zen of Cloud

Next, we will learn how to create and use unit tests through two examples. We will first create a
unit test case, and then set it to automatic run during each build. Next, we will set up gated check-
in, which allows new code to be checked in only if all unit test cases have passed.

Example 16.2: Create and Use Unit Tests

Difficulty: ***

 1. Continue with Example 16.1. Right-click the solution, and select the Add→New Project
menu.

 2. Choose the Test→Unit Test template, and click the OK button.
 3. In the new unit test project, add a reference to the Web Role project. In addition, add a

reference to System.Web.MVC 4.0.0.0 (from the Extensions group) and a reference to
Microsoft.CSharp 4.0.0.0 (from the Frameworks group). If you are using MVC 5, you will
need to add a reference to System.Web.MVC 5.0.0.0 instead.

 4. Modify the test method. The modified code is shown in Code List 16.1.
 5. Ensure the HomeController in the Web Role has been modified:

public ActionResult About()
{
 ViewBag.Message = "This is a new message.";
 return View();
}

 6. Select the TEST→Windows→Test Explorer menu.
 7. In the Test Explorer, click the Run All link. Because we only have one test case, the test will

finish quickly, as shown in Figure 16.14.
 8. Now let us set up the unit tests to automatically run when the solution is built. In Visual

Studio, select the VIEW→Team Explorer menu. On the project’s home page, click on the
Builds link to switch to the Builds view.

 9. Click in the New Build Definition link.
 10. On the build definition window, switch to the Process tab. Then, in the table to the right,

expand the row that says “Automated Tests.” Change Fail Build on Test Failure to True.
This option will make the build fail unless all unit tests have passed. In addition, change
Target platform for text execution to X64, as shown in Figure 16.15.

 11. Press Ctrl + S to save the changes.

CODE LIST 16.1 A UNIT TEST METHOD

using Example16.1.Controllers;
using System.Web.Mvc;
…
[TestMethod]
public void TestMethod1()
{
 HomeController controller = new HomeController();
 ViewResult result = controller.About() as ViewResult;
 As sert.AreEqual("This is a new message.", result.ViewBag.

Message);
}

Source Control and Tests with Visual Studio Online ◾ 455

 12. Back in Team Explorer, right-click the newly created build definition, and select the Queue
New Build menu. On the pop-up dialog, click the Queue button to queue a new build. Back
in Team Explorer, right-click the build definition again and select the View Builds menu.
Depending on how fast the build process is, your queued build will be either on the Queued
view or on the Completed view. Double-click on the build to view its details, as shown in
Figure 16.16. You will observe that our test case has been executed during the build process.
Because the test passes, the build is successful.

 13. [Optional] If you wish to run the test cases during local builds as well, check the TEST→Test
Settings→Run Tests After Build menu.

Figure 16.14 Unit test result.

Figure 16.15 Creating a build definition.

456 ◾ Zen of Cloud

Example 16.3: Gated Check-In

Difficulty: **

 1. Continue with the previous example. Open the build definition you created in Example
16.2. Switch to the Trigger tab, and select the Gated Check-in option. Once this option is
enabled, only check-ins that are successfully built can be checked in. Because in Example
16.2, we have set up to fail the build if unit tests fail, we are essentially saying that a new code
may be allowed to be checked in only when all unit test cases pass (Figure 16.17).

 2. Press Ctrl + S to save the changes.
 3. Modify the message in the HomeController again to make our test case fail:

public ActionResult About()
{
 ViewBag.Message = "This is a WRONG message.";
 return View();
}

 4. Save and rebuild the solution.
 5. In Solution Explorer, right-click the solution and select the Check-in menu.
 6. In Team Explorer, enter a comment for the check-in, and click the Check-in button.

Figure 16.16 Build result.

Source Control and Tests with Visual Studio Online ◾ 457

 7. Because we have set up gated check-in, our code has to be verified (by building and running
unit tests) before being checked into the source repository. On the Gated Check-in dialog,
click Build Changes to build the solution, as shown in Figure 16.18.

 8. In Team Explorer, you can observe the pending check-in. Click on the “here” link (as shown
in Figure 16.19) to view the check-in details.

 9. Because the test case will fail, the check-in request will be rejected. You can switch to the
details view to see the exact reason why the check-in is rejected (see Figure 16.20). In order to
check in any new code, you will have to make sure the solution builds and all test cases pass.

Figure 16.17 Set up gated check-in.

Figure 16.18 Gated check-in.

458 ◾ Zen of Cloud

Figure 16.19 Pending changes.

Figure 16.20 Rejected check-in.

Source Control and Tests with Visual Studio Online ◾ 459

16.4 Create and Use Load tests
Visual Studio Online also allows you to create and run load tests. In the past, in order to run seri-
ous load tests, you would need to set up, configure, and mange a large number of test resources
such as test controller machines and test agent machines. Visual Studio Online streamlines load
testing by freeing you from managing the underlying test infrastructure.

With a Visual Studio Online subscription, you are granted a certain number of virtual user
minutes for load tests. During the Commercial Preview period, you get 15,000 virtual user min-
utes free per month. For example, if your test consists of 250 concurrent virtual users and lasts
60 min, it will consume 250 × 60 = 15,000 virtual user minutes.

Example 16.4: Load Tests with Visual Studio Online

Difficulty: **

 1. Launch Visual Studio 2013 Ultimate edition.
 2. Create a new ASP.NET Web Application (using MVC template). This will be your test target

site.
 3. Add an empty Web API 2 Controller named FileController.
 4. Add the following line to the Application_Start method of Global.asax.cs:

GlobalConfiguration.Configure(WebApiConfig.Register);

 5. Add the following method to your FileController. This method returns a text file with a
given name and size, after the specified delay. This method allows us to simulate variable page
sizes and job complicities in our tests.

public async Task<HttpResponseMessage>
 Get(string name, int size, int delay)
{
 Thread.Sleep(delay);
 HttpResponseMessage result = new
 HttpResponseMessage(HttpStatusCode.OK);
 result.Content = new StringContent(new string('X', size));
 result.Content.Headers.ContentDisposition =
 new ContentDispositionHeaderValue("attachment");
 re sult.Content.Headers.ContentDisposition.FileName = name +

".txt";
 result.Content.Headers.ContentType =
 new MediaTypeHeaderValue("text/plain");
 return result;
}

 6. Add a new Web Performance and Load Test Project (under Test category) to the solution.
 7. A WebTest1.webtest should be opened in the editor. If the test does not open, double-click

on WebTest1.webtest in Solution Explorer to open it.
 8. The easiest way to create a web test is to record a user session in a browser. You can record

different sessions for typical scenarios and then mix them together in your load test. Because
the recorded sessions are supposed to be realistic representations of typical user behavior, you
should pretend to be a regular user trying to carry out actual business instead of randomly

460 ◾ Zen of Cloud

clicking around. End users think that times (delays between operations) are also recorded, so
ensure that you do not introduce unreasonable delays, or transit too fast between operations.

 9. Press Ctrl + F5 to launch the website without a debugger.
 10. Click the record button to launch a browser to record your session, as shown in Figure 16.21.
 11. This operation pops up a browser. Paste in the website URL and start recording your ses-

sions, as shown in Figure 16.22.
 In our session, we recorded the following actions. The four queries represent a landing

page, a small page, a big page, and a long task, respectively:
 http://localhost:[port]/
 http://localhost:[port]/api/File?name=abc.txt&size=1024&delay=0

Figure 16.21 Record session button.

Figure 16.22 Recording a session.

Source Control and Tests with Visual Studio Online ◾ 461

 http://localhost:[port]/api/File?name=def.txt&size=10240&delay=10
 http://localhost:[port]/api/File?name=hij.txt&size=10240&delay=1000

 12. The recording is very likely to capture some other requests, depending on your browser add-
ons. After stopping the recording, you should remove unwanted entries—simply select them
in the editor and press the Delete key to delete them. Figure 16.23 shows that all but the
entries we want to keep are deleted.

 13. Now you can run the test to verify if everything is recorded correctly. Click the Run Test
button (to the left of the record button) to run the test. If everything is done correctly, you
should see the test pass, as shown in Figure 16.24.

 14. Next, we will create our load test using the previous web test as workload. As mentioned
earlier, you can record multiple web tests to simulate a more realistic mixture of workloads.
But for simplicity, we will just use one web test here. Right-click the test project and select
Add→Load Test. On the New Load Test Wizard dialog, click the Next button to continue.

 15. On the next screen, accept all default settings and click the Next button to continue. By
default, the load test will use think times under a normal distribution centered on recorded
think times. This creates realistic variations in virtual user operation speeds.

 16. The next screen allows you to pick a load pattern. You can use a constant load (default), or
configure the load to ramp up gradually over the given period of time. A step load is very
useful when you perform stress tests. Basically, the test will keep adding more users till
the website starts to return errors (such as 500), or the site’s performance drops below the
expected threshold (such as response time exceeding 3 s). Here, we use the default setting and
click the Next button to continue.

Figure 16.23 Cleaned-up queries.

462 ◾ Zen of Cloud

 17. Click the Next button again and you will reach the Test Mix page, on which you can mix
recorded tests together. Click on the Add button. Then, add the web test into the test mix, as
shown in Figure 16.25.

 18. Because we only have one test in the mix, by default it takes over 100% of the workload
distribution. Click the Next button to continue.

 19. On the next couple of screens, you can pick different network speed mixtures and browser
mixtures for your load test. These mixtures are ideal for simulating the actual traffic to your
site more realistically. Here, we accept all default settings and move forward.

 20. On the screen where you can add computers to act as test controllers and test agents, simply
click the Next button to continue without adding machines. This is because we leverage
Visual Studio Online to manage test resources for us.

 21. On the last screen, you can decide how long the load test should last. In addition, you can
specify a warm-up period for your website to warm up. The warm up period allows JIT of
web pages, as well as other initializations you may have, such as preloading cache, to execute
so that when the actual load test starts, you have a stable environment that is fully prepped.
Here, we give the site 1 min to warm up and we run the load test for 5 min, as shown in
Figure 16.26. Of course, an actual load test would last much longer. Click the Finish button
to complete the wizard.

 22. Before we can run the load test on Visual Studio Online, we need to make the website acces-
sible from cloud. So, we publish the website to Microsoft Azure.

Figure 16.24 Passed test.

Figure 16.25 Adding web test to load test.

Source Control and Tests with Visual Studio Online ◾ 463

 23. Next, we need to modify the web test to modify the recorded loadhost address to the pub-
lished website address. Right-click on the web test and select the Parameterize Web Servers
menu. Then, on the Parameterize Web Servers dialog, click on the Change button and
enter the published website address. Click the OK button, and then press Ctrl + S to save the
changes (Figure 16.27).

 24. Back in Solution Explorer, double-click the Local.testsettings file under the Solution
Items folder. Then, on the Test Settings dialog, select the option to Run tests using Visual
Studio Team Foundation Service, as shown in Figure 16.28. Click Next to continue.

 25. Keep clicking the Next button till you reach the last screen, where you can change the Run
tests in 32 bit or 64 bit process to Run tests in 64 bit process on 64 bit machine. Click
the Apply button and then the Close button.

 26. Back in Solution Explorer, double-click the load test to open it.
 27. Click the Run Load Test button to start the test. Visual Studio Online will provision the

necessary machines and execute the test. After the test is completed, you can download the
complete report by clicking the Download report link, as shown in Figure 16.29.

 28. Click on the Download report link to download the report. Once the report is downloaded,
click the View report link to open the report, as shown in Figure 16.30.

Due to the constraint of size, we cannot elaborate more on load tests here but we can leave
several tips:

 ◾ Before you analyze the data in detail, examine the errors from the test agents. Usually, you
would want 0 errors on the test agents so that you know the test result is not skewed because
agent machines are stressed out. By default, Visual Studio Online automatically decides how

Figure 16.26 Specify test duration.

Figure 16.27 Parameterize web servers.

464 ◾ Zen of Cloud

many agents need to be allocated for the test. You can change this behavior by changing the
run settings of a load test. To do this, double-click the load test, and then right-click its run
setting node (there should be a Run Settings1 by default). Select the Properties menu, and
then enter the number of agents you want to use to the Agent count field.

 ◾ Load test results should be evaluated against clear goals. For example, “Support 10,000
users” is not a clear goal. On the other hand, “Allow 10,000 users to place orders at the same
time under an average of 3 s response time, without any server-side errors” is a very reason-
able goal. In the second case, you can measure the response time as well as the error count
under the specified load and compare the metrics against your goal.

Figure 16.28 Configure load test to run on Visual Studio online.

Figure 16.29 Load test result.

Source Control and Tests with Visual Studio Online ◾ 465

 ◾ You should separate your load tests and your stress tests. The purpose of load tests is to deter-
mine whether the system can perform under expected loads. Stress tests, on the other hand,
are to find out the upper limits of the system. It is usually advisable to run stress tests on a
different deployment than your production environment as stress tests can be destructive.
On the other hand, load tests can optionally be executed on the production environment at
a lower scale—basically, you are sampling part of the production traffic to measure system
performance under loads.

 ◾ You should also separate load tests from system profiling. Load tests are used to measure
system performance under realistic traffic, while system profiling is often used to pinpoint
specific performance issues. Maintaining the two separately allows you to better focus on the
task at hand. Running and analyzing load tests is itself a lengthy and complex task, so you
should try to avoid complicating it further and focus on getting the test result out.

Of course, here we have barely scratched the surface of Visual Studio Online. You may consult
www.visualstudio.com and MSDN for further information.

16.5 Summary
Visual Studio Online provides a comprehensive collection of tools and services for your develop-
ment needs. It helps to orchestrate individuals in your engineering team into an agile and produc-
tive team. In this chapter, we focused on source control and test features. Visual Studio Online
offers much more, especially in project management. Project management and various method-
ologies are out of the scope of this book. The www.visualstudio.com Getting Started session has
great information to help you to start using Visual Studio Online project management features,
including managing backlogs, using Kanban board, managing sprints, and collaborating teams.
Be sure to check it out and start leveraging its useful features in your projects.

Figure 16.30 Sample test report.

467

Chapter 17

Scripting and Automation

Automated scripting has been a crucial tool for system administrators to manage various hard-
ware and software systems. As a leading cloud platform, Microsoft Azure provides comprehen-
sive scripting and automation supports for developers and system administrators. First of all,
Microsoft Azure provides a complete set of REST-style management API for developers. Second,
Microsoft Azure provides PowerShell cmdlets for managing various Microsoft Azure resources.
In addition, Microsoft Azure also provides a command line tool for developers that use Mac or
Linux systems. Cloud service providers can pick and choose among these offers based on their
needs and automate common administrative tasks, hence to improve efficiency as well as reduc-
ing human errors.

17.1 Microsoft Azure PowerShell Cmdlets
Windows PowerShell is an automation framework based on .NET. It includes a command line
environment and a scripting language. System administrators can manage Windows systems
locally or remotely using PowerShell. The features of PowerShell are delivered as a series of cmd-
lets. PowerShell has a rich set of built-in cmdlets such as file I/O and WMI. You can also import
additional cmdlets to extend PowerShell. Microsoft Azure is such a cmdlet developed for Microsoft
Azure management tasks.

17.1.1 Preparing a Microsoft Azure PowerShell Cmdlets Environment
To use Microsoft Azure PowerShell cmdlets, you need Windows 8, Windows 7, Windows
Server 2012, or Windows Server 2008 R2. Then, you can download and install Microsoft Azure
PowerShell from http://www.windowsazure.com/en-us/downloads/#cmd-line-tools, or install it
using Web Platform Installer (Web PI).

468 ◾ Zen of Cloud

As a security measure, the PowerShell execution policy defines conditions a script has
to meet before it can be executed. For example, the execution policy can specify that only
signed scripts can be executed, so as to avoid accidentally executing scripts from untrusted par-
ties. Microsoft Azure PowerShell cmdlets requires the execution policy to be RemoteSigned,
Unrestricted, or Bypass. To set up the execution policy, launch Microsoft Azure PowerShell as
an administrator, and use the command Set-ExecutionPolicy to set up the execution policy,
as shown in Figure 17.1.

Note: You need to launch Microsoft Azure PowerShell as administrator only when you set
up the execution policy.

Before you can use Microsoft Azure cmdlets, you need to configure your workstation to estab-
lish the connection to Microsoft Azure. You can use the Set-AzureSubscription cmdlet and
Select-AzureSubscription cmdlet to provide details of the subscription such as the management
certificate. Or, you can configure the environment by downloading and importing a publish set-
tings profile, just as you have done when you publish Cloud Services. Here we will use the second
approach:

 1. Launch a browser. Access the address https://windows.azure.com/download/publishprofile.
aspx to download your publish settings file. After signing in to Microsoft Azure, save the
publish settings file to a local folder.

 2. In Microsoft Azure PowerShell, enter the command Import-AzurePublishSettingsFile
<publish settings file> to complete the configuration step, as shown in Figure 17.2.

If your publish settings file contains multiple Microsoft Azure subscriptions, you can use this com-
mand to list your subscriptions:

Get-AzureSubscription | SELECT SubscriptionName

Figure 17.1 Set up PowerShell execution policy.

Figure 17.2 import Microsoft Azure publish settings file.

Scripting and Automation ◾ 469

You can use this command to select current subscription and to use current storage account:

Set-AzureSubscription –SubscriptionName <subscription name>
-CurrentStorageAccount <storage account>

17.1.2 Managing Virtual Machines
We can use Microsoft Azure PowerShell to manage Microsoft Azure Virtual Machines. We will
learn how to create and delete a Virtual Machine using PowerShell through an example. In the
example, we use the following cmdlets:

 ◾ Get-AzureVMImage
 This cmdlet returns a list of Virtual Machine images that are available to you, for example:

PS C:\>Get-AzureVMImage | SELECT ImageName
ImageName

0b11de9248dd4d87b18621318e037d37__RightImage-CentOS-6.2-x64-v5.8.8.1
0b11de9248dd4d87b18621318e037d37__RightImageCentOS-6.3-x64-v5.8.8
0b11de9248dd4d87b18621318e037d37__RightImage-CentOS-6.3-x64-v5.8.8.5
0b11de9248dd4d87b18621318e037d37__RightImage-CentOS-6.3-x64-v5.8.8.6
0b11de9248dd4d87b18621318e037d37__RightImage-CentOS-6.3-x64-v5.8.8.7
0b11de9248dd4d87b18621318e037d37__RightImage-CentOS-6.3-x64-v5.8.8.8
0b11de9248dd4d87b18621318e037d37__RightImage-CentOS-6.3-x64-v5.8.8.9
0b11de9248dd4d87b18621318e037d37__RightImage-CentOS-6.4-x64-v13.4
…

 ◾ Get-AzureLocation
 This command returns the list of regions you can deploy your services to, for example,

PS C:\>Get-AzureLocation | SELECT DisplayName
DisplayName

West Europe
Southeast Asia
East Asia
North Central US
North Europe
South Central US
West US
East US

 ◾ New-AzureQuickVM
 This cmdlet creates a Virtual Machine. See the following example for details.

 ◾ Remove-AzureVM
 Delete a Virtual Machine. See the following example for details.

470 ◾ Zen of Cloud

Example 17.1: Managing Virtual Machines using Microsoft Azure PowerShell

Difficulty: **

 1. First, set the image you want to use. You can use Get-AzureVMImage to get a list of images.

$image = "0b11de9248dd4d87b18621318e037d37__RightImage-CentOS-6.4-
x64-v13.4"

 2. Then, set the region you want to deploy your Virtual Machine. You can use Get-AzureLocation
to get a list of regions.

$location = "West US"

 3. Set the name of the Cloud Service corresponding to the Virtual Machine and the password
of the administrator:

$svcName = "hbaivmservice02"
$admPass = "P@ssword$123"

Note: The service name has to be globally unique. You can use Test-AzureName–Service
<name> to test if a name is valid. Note that the cmdlet returns False to indicate that a name
has not been used, hence usable.

 4. At last, use the New-AzureQuickVM cmdlet to create a Virtual Machine:

New-AzureQuickVM –Linux –name "hbailinux" –ImageName $image –
ServiceName $svcName –Location $location –Password $admPass –
LinuxUser "haishi"

 5. To delete a Virtual Machine:

Remove-AzureVM –ServiceName $svcName –Name "hbailinux"

Common Virtual Machine–related cmdlets are summarized in Table 17.1.

Note: Configure a Health Probe for a Virtual Machine
In Example 7.7 of this book, we introduced how to add multiple virtual machines to a load
balance to achieve high availability. You can also use the Set-AzureEndpoint cmdlet and

Scripting and Automation ◾ 471

table 17.1 Virtual Machine Cmdlets

Cmdlet Description

Add-AzureDataDisk Attach a data disk to a virtual machine

Add-AzureDisk Add a virtual disk to Microsoft Azure virtual disk gallery

Add-AzureVhd Upload a .vhd file to Microsoft Azure Storage account

Add-AzureVMImage Add a new OS image to the image gallery

Get-AzureDataDisk Read data disk objects

Get-AzureDisk Read virtual disk objects from Microsoft Azure virtual disk gallery

Get-AzureOSDisk Read the OS virtual disk object on a virtual machine

Get-AzureVM Read one or more virtual machine objects

Get-AzureVMImage Read available virtual machine images

Import-AzureVM Import Microsoft Azure virtual machine state from a file

New-AzureQuickVM Create a virtual machine using simple settings

New-AzureVM Create a virtual machine

New-AzureVMConfig Create a virtual machine configuration object

Remove-AzureDataDisk Remove a data disk from a virtual machine

Remove-AzureDisk Remove a virtual disk from Microsoft Azure virtual disk gallery

Remove-AzureVM Remove a virtual machine

Remove-AzureVMImage Remove an OS image from the image gallery

Restart-AzureVM Restart a virtual machine

Save-AzureImage Capture and save a mirror image of a stopped virtual machine

Set-AzureVMSize Set virtual machine size

Start-AzureVM Start a virtual machine

Stop-AzureVM Shut down a virtual machine

Update-AzureDisk Update the label of a disk in Microsoft Azure virtual disk gallery

Update-AzureVM Update a virtual machine

Update-AzureVMImage Update the label of an OS image in the image gallery

472 ◾ Zen of Cloud

17.1.3 Managing Cloud Services
You can also use Microsoft Azure PowerShell to manage Cloud Services. For example, to create a
new Cloud Service using PowerShell is very easy:

NewAzureService –ServiceName <service name> -AffinityGroup <affinity
group>

You can use the following command to get the list of affinity groups:

Get-AzureAffinityGroup | Select Name

Common Cloud Service–related cmdlets are summarized in Table 17.2.

17.1.4 Managing Microsoft Azure Websites
Similarly, you can manage Microsoft Azure Websites using Microsoft Azure PowerShell cmdlets.
Common website-related cmdlets are summarized in Table 17.3.

17.1.5 Other Cmdlets
In addition to the preceding cmdlets, you can use Microsoft Azure PowerShell cmdlets to manage
various Microsoft Azure resources such as subscriptions, storage accounts, service bus entities, and
virtual networks. Interested readers may consult related MSDN documents.

17.2 Microsoft Azure Cross-Platform Command Line tools
Microsoft Azure Cross-Platform Command Line Tool provides a complete set of tools for Linux
and Mac users to manage Microsoft Azure resources. You can use the Command Line Tools to
perform various operations such as creating Virtual Machines and managing websites and Mobile
Services.

the Update-AzureVM cmdlet to specify a custom health probe for virtual machines. For
example, the following command
Get-AzureVM -ServiceName "MyService" -Name "MyVM" | Set-AzureEndpoint
-LBSetName "MyLBSet" –Name MyEndpoint2 –Protocol tcp –LocalPort 80
-ProbePort 80 -ProbeProtocol http -ProbePath "/" | Update-AzureVM

specifies a health probe based on HTTP, port 80, and at path “/”.

Scripting and Automation ◾ 473

table 17.2 Cloud Service Cmdlets

Cmdlet Description

Add-AzureCacheWorkerRole Add a dedicated caching role

Add-AzureCertificate Upload a certificate

Add-AzureDjangoWebRole Add a new Python Djang web role

Add-AzureNodeWebRole Add a new Node.js web role

Add-AzurePHPWebRole Add a PHP web role

Add-AzureWebRole Add a web role

Add-AzureNodeWorkerRole Add a Node.js worker role

Add-AzurePHPWorkerRole Add a PHP worker role

Add-AzureWorkerRole Add a worker role

Disable-AzureServiceProjectRemoteDesktop Disable remote desktop access

Enable-AzureMemcacheRole Enable Memcache protocol on a caching role

Enable-AzureServiceProjectRemoteDesktop Enable remote desktop access

Get-AzureAffinityGroup List affinity groups

Get-AzureCertificate Read certificate

Get-AzureDeployment Read deployment details

Get-AzureOSVersion List currently supported OS versions

Get-AzureRemoteDesktopFile Read remote desktop file (.RDP)

Get-AzureRole List roles in a Cloud Service

Get-AzureService List all Cloud Services under current
subscription

Get-AzureServiceProjectRoleRuntime List all supported role environments, such as
IIS and PHP

Move-AzureDeployment Swap staging and production deployment

New-AzureAffinityGroup Create a new affinity group

New-AzureDeployment Deploy a Cloud Service

New-AzureRoleTemplate Create a web/worker role template

New-AzureService Create a new Cloud Service

Publish-AzureServiceProject Deploy current service to Microsoft Azure

Remove-AzureAffinityGroup Delete an affinity group

(Continued)

474 ◾ Zen of Cloud

17.2.1 Installing the Command Line Tools
Under Mac, you can download and install the Command Line Tool package from this address:
http://go.microsoft.com/fwlink/?linkid=252249&clcid=0x409.

Under Linux, you can use the following command to install the package:

npm install azure-cli –g

Moreover, you can install the Windows-based version from the following address, or install it
using Web PI:
http://www.windowsazure.com/en-us/downloads/
By default, the Windows-based version is installed under the folder c:\Program Files (x86)\
Microsoft SDKs\Microsoft Azure\CLI\wbin. You can launch the tools using azure.cmd, as shown
in Figure 17.3.

table 17.2 (Continued) Cloud Service Cmdlets

Cmdlet Description

Remove-AzureCertificate Delete a certificate

Remove-AzureDeployment Delete a Cloud Service deployment

Reset-AzureRoleInstance Reset or remirror role instances

Save-AzureServiceProjectPackage Package a Cloud Service as a .cspkg file

Set-AzureAffinityGroup Update affinity group properties

Set-AzureDeployment Update Microsoft Azure deployment states,
update method or configuration

Set-AzureRole Update number of instances of a role

Set-AzureService Set or update Cloud Service’s label and
description

Set-AzureServiceProject Set default region, subscription, deployment
environment, and storage account

Set-AzureWalkUpgradeDomain Perform an update domain walk

Start-AzureEmulator Launch computer emulator and storage
emulator

Start-AzureService Start a Cloud Service

Stop-AzureEmulator Shutdown emulators

Stop-AzureService Shutdown a Cloud Service

Test-AzureName Test if a service name or storage account
name has been taken

Scripting and Automation ◾ 475

table 17.3 Website Cmdlets

Cmdlet Description

Get-AzureWebsite List websites under current subscription

Get-AzureWebsiteDeployment List current website deployments

Get-AzureWebsiteLocation List available regions for website
deployments

New-AzureWebsite Create a website

Remove-AzureWebsite Delete a website

Restart-AzureWebsite Stop and restart a website

Restore-AzureWebsiteDeployment Redeploy an earlier version

Save-AzureWebsiteLog Download and save website logs

Set-AzureWebsite Update website configuration

Show-AzurePortal Launch Microsoft Azure Management Portal

Show-AzureWebsite Open a browser to manage websites

Start-AzureWebsite Start a website

Stop-AzureWebsite Stop a website

Figure 17.3 Microsoft Azure Command Line tools.

476 ◾ Zen of Cloud

17.2.2 Getting Started with the Command Line Tools
First, you need to import the public settings file:

azure account import <public settings files>

The result of this command is shown in Figure 17.4.
Then, you can use the following command to set the current subscription:

azure account set <subscription>

Now, your environment is ready for various Microsoft Azure operations. For example, Figure 17.5
demonstrates how to use the azure service list command to enumerate Cloud Services under the
current subscription.

Microsoft Azure Cross-Platform Command Line Tools comes with complete online docu-
ments. When you get started following the previous steps, you can explore the usage of other
commands with the help of online documents.

Figure 17.4 import Microsoft Azure publish settings file.

Figure 17.5 enumerate Cloud Services under a subscription.

Scripting and Automation ◾ 477

17.3 Microsoft Azure Management APi
Microsoft Azure Management API allows developers to programmatically access most of the
Microsoft Azure Management Portal capabilities. Microsoft Azure Management API is a REST-
styled API, and requires SSL and certificated-based authentication to ensure security.

Now let us learn programming with Microsoft Azure Management API with a simple
example.

Example 17.2: Use Microsoft Azure Management API

Difficulty: ***

 1. First, acquire a certificate. We can use the makecert tool to generate a self-signed certificate:

makecert -r -pe -a sha1 -n "CN=My Azure Management Certificate" -ss
My -len 2048 -sp "Microsoft Enhanced RSA and AES Cryptographic
Provider" -sy 24 myazuremanagementcert.cer

 2. Once the certificate is generated, we need to use Microsoft Azure Management Portal to
upload this certificate. Sign in to Microsoft Azure Management Portal.

 3. In the navigation pane, click the SETTINGS link.
 4. On the settings view, click the UPLOAD button on the command bar. Pick the certificate

you just created, and select the subscription to use (if you only have one subscription, you
don’t see the subscription field). Click the check button to continue.

 5. Then, you need to get the subscription ID. When you invoke Microsoft Azure Management
API calls, you need to provide the subscription ID to uniquely identify your Microsoft Azure
subscription. You can use the following Microsoft Azure PowerShell cmdlet to get the name,
ID, and certificate of a subscription:

Get-AzureSubscription | Format-Table @{Expression=
{$_.SubscriptionName};width=25}, @{Expression=
{$_.SubscriptionId};width=40}, @{Expression = {$_.Certificate.
Thumbprint}}

Figure 17.6 is an example of the result of executing this command.
 6. Create a new Windows Console application.
 7. Modify the Program.cs file to enter the source code as shown in Code List 17.1.
 8. Figure 17.7 shows the output of this code in our environment.

Figure 17.6 Read Microsoft Azure subscription information.

478 ◾ Zen of Cloud

CODE LIST 17.1 MICROSOFT AZURE MANAGEMENT API SAMPLE

 1: using System;
 2: using System.IO;
 3: using System.Net;
 4: using System.Security;
 5: using System.Security.Cryptography;
 6: using System.Security.Cryptography.X509Certificates;
 7: using System.Xml;
 8:
 9: namespace ManagementAPIListServices
10: {
11: class Program
12: {
13: static void Main(string[] args)
14: {
15: string subscriptionId = "<subscription id>";
16: string operationName = "hostedservices";
17: Ur i requestUri = new Uri("https://management.core.

windows.net/"
18: + subscriptionId
19: + "/services/"
20: + operationName);
21: HttpWebRequest request =
22: (Ht tpWebRequest)HttpWebRequest.

Create(requestUri);
23: request.Headers.Add("x-ms-version", "2010-10-28");
24: request.Method = "GET";
25: request.ContentType = "application/xml";
26: //locate certificate
27: string certThumbprint = "<certificate thumbnail>";
28: X509Store certStore = new X509Store(StoreName.My,
29: StoreLocation.CurrentUser);
30: certStore.Open(OpenFlags.ReadOnly);
31: var certs = certStore.Certificates.Find
32: (X5 09FindType.FindByThumbprint, certThumbprint,

false);
33: certStore.Close();
34: //attach the certificate to the request
35: request.ClientCertificates.Add(certs[0]);
36: Ht tpWebResponse response = (HttpWebResponse)request.

GetResponse();
37: using (StreamReader reader = new
38: StreamReader(response.GetResponseStream()))
39: {
40: //parese returned XML file
41: XmlDocument doc = new XmlDocument();
42: doc.LoadXml(reader.ReadToEnd());
43: XmlNamespaceManager nm =
44: ne w XmlNamespaceManager(doc.

NameTable);

Scripting and Automation ◾ 479

45: nm.AddNamespace("i",
46: "ht tp://www.w3.org/2001/XMLSchema-

instance");
47: nm.AddNamespace("M",
48: "ht tp://schemas.microsoft.com/

windowsazure");
49: va r services = doc.SelectNodes("//

M:HostedService",nm);
50: Co nsole.WriteLine(string.Format("{0,-20}{1,-20}

{2,-35}",
51: "Name", "Location", "Url"));
52: Co nsole.WriteLine(string.Format("{0,-20}{1,-20}

{2,-35}",
53: new string('=', 19), new string('=', 19),
54: new string('=', 35)));
55: for (int i = 0; i < services.Count; i++)
56: {
57: va r locationNode = services[i].

SelectSingleNode
58: ("M :HostedServiceProperties/M:Location",

nm);
59: Co nsole.WriteLine(string.Format("{0,-20}

{1,-20}{2,35}",
60: se rvices[i].SelectSingleNode("M:ServiceName",

nm)
61: .InnerText,
62: locationNode == null? "-------":
63: locationNode.InnerText,
64: services[i].SelectSingleNode("M:Url", nm)
65: .InnerText.Substring(0,32) + "..."
66:));
67: }
68: }
69: }
70: }
71: }

Figure 17.7 enumerate Cloud Services using Microsoft Azure Management APi.

480 ◾ Zen of Cloud

17.4 Summary
In this chapter, we provided a brief introduction of Microsoft Azure PowerShell cmdlets, Microsoft
Azure Cross-Platform Command Line Tools, and Microsoft Azure Management API. Of course,
the focus of this chapter is merely to get you started so that you can start exploring the rich func-
tionalities of these tools by yourself.

481

Chapter 18

Azure and Devops

Microsoft Azure is under constant development. At the time of writing, tons of new features
are being added to it. In this chapter, we will discuss some of Azure’s exciting new features
that reflect its future directions for evolution. Since it is impossible to enumerate all of the
new features of Azure in a single chapter, we will focus only on those features that revolve
around DevOps. As the name suggests, the essence of DevOps is to ensure smooth interaction
between development and operations. Many of Azure’s new features resonate with this idea.
And Microsoft is providing additional tools and infrastructural support to enable DevOps
practices.

18.1 Devops overview
Before looking at specific features, let us briefly review what DevOps really means. Because
DevOps is still relatively new, there has not been a universally accepted definition. Generically
speaking, DevOps is a collection of ideas, methodologies, practices, and tools that encourage close
team collaboration, improve business agility, as well as IT alignment. If you know about Agile
software development, many of these ideas should sound familiar to you. DevOps is a continua-
tion of the Agile movement, and IT alignment across teams is a key aspect of DevOps.

It is rather difficult to cover DevOps in its entirety in just a few paragraphs because DevOps
is still an evolving concept that impacts software business at different levels. Instead, we will list
a few DevOps phenomena that are likely to occur in your working environment. Of course, what
we describe here are exaggerated, ideal scenarios. What you will encounter in the real world will
probably be less extreme and sometimes subtle.

18.1.1 Everything Is Code
Developers are a creative bunch and they always want change, while one of the top-priority tasks
of IT professionals is to keep systems stable. This has indeed been an unresolvable conflict that has
caused much friction between the two rival tribes, developers and IT professionals.

482 ◾ Zen of Cloud

From the viewpoint of DevOps, a software (or a service) is a holistic unit that consists of appli-
cation code, configuration, infrastructure, and data. When a software is revised or updated, not
only should the application code be versioned and archived, the infrastructural changes should
also be captured and versioned at the same time. This requires IT professionals and developers to
communicate with each other with clarity, reliability, and traceability. Capturing everything as
abstracted code and scripts serve the purpose perfectly.

With the responsibility of maintaining physical servers on cloud, IT professionals find them-
selves working more and more at an abstraction level where resources are described and configured
by scripts. This abstraction allows infrastructures to be defined and maintained as code. On the
other hand, because the infrastructural code can be executed by any authorized users, developers
can deploy their own development and testing environments by themselves while keeping a high
confidence that the production environments will be constructed and maintained in a consistent
manner. As the developers gain more knowledge on infrastructural code, they can start manipu-
lating the infrastructure at the abstracted level, and IT professionals in turn can fine-tune the code
for large-scale, optimized deployment.

18.1.2 Everyone Is a Developer
DevOps is not a new job title that sits between developments and operations. It reflects the fusion
of the two departments. Such convergence brings new challenges to all staff. Developers are often
more capable of coping with such challenges—after all, code is what they live, eat, and breathe!
So it is not surprising to see developers becoming superheroes, who take care of everything. This
phenomenon is often observed in start-ups, who have been major advocators and beneficiaries of
the movement.

For larger enterprises and interdependent software vendors (ISVs), it is unrealistic to expect
such complete fusion. Instead, operations personnel behave more and more like developers as
they start to work with abstract artifacts, codes, and scripts. Although, in many larger enter-
prises, the work style and human resource allocations have been fixed by existing architectures
and legacy systems. However, this does not mean these companies cannot adopt DevOps for
their new projects at a smaller scale.

18.1.3 Every Day Is Release Day
The landscape of marketing has drastically changed over the past decade. Consumers are more
proactive than ever. Nowadays, people use technology at their fingertips to search for products
and services instead of waiting to hear something they might like in marketing campaigns. For
a service provider, getting a higher rank in search engines and a better rating in popular sites are
becoming far more important than marketing campaigns. And once they get a customer, they also
need to take measures to retain that customer, as the customer is in a position to find the next big
thing at any time.

Continuous engagement with customers has become key to sustainable business. And with
development and operations folding into one unit, products can be released more frequently,
changes can be applied quickly, and new features can be introduced more promptly. Such unprec-
edented agility provides ISVs opportunities to respond to market changes faster and to maintain
relationships with their customers.

Azure and DevOps ◾ 483

18.2 VM Agent and VM extensions
Configuration automation is a fundamental requirement of DevOps. Microsoft Azure provides
both first-party and third-party options to capture and automate machine configurations at scale.
And all of this is possible because of VM Agent, which we discuss next.

18.2.1 VM Agent
VM Agent is a lightweight process that can pull down additional VM Extensions, which
are software packages that can be dynamically installed in your virtual machines to customize
them to meet your specific project needs. When you create a new virtual machine using Azure
Management Portal, the VM Agent is enabled by default, as shown in Figure 18.1. If you want to
install VM Agent to an older virtual machine, which does not come with a built-in VM Agent,
you can download and run the Agent installer from this link: http://go.microsoft.com/fwlink/?
LinkID=394789&clcid=0x409.

18.2.2 VM Extensions
Once VM Agent is installed on a virtual machine, it can acquire and install additional VM
Extensions from the Azure VM Extension Gallery, as shown in Figure 18.2.

At the time of writing, there are only a limited number of VM Extensions available from
the VM Extension Gallery. You can use PowerShell cmdlet Get-AzureWMAvailableExtension

Figure 18.1 VM Agent is enabled by default.

484 ◾ Zen of Cloud

(requires Microsoft Azure PowerShell; see Chapter 17) to list currently available extensions, as
shown in Figure 18.3.

If you want to list extensions that are already installed on a VM, you can use the Get-
AzureVMExtension command, as shown in the example in Figure 18.4.

18.2.3 Custom Script Extension
Custom Script Extension is a VM Extension that can automatically download and execute
PowerShell scripts and files from Azure Storage. Although the functionality of this agent is very
simple, it can help you accomplish lots of customization scenarios because of the capability of
PowerShell.

To install the Custom Script Extension, you can use cmdlet Set-AzureVMExtension, as
shown in Figure 18.5.

Azure VM
agent

Azure VM

Extension
Extension
package

Azure VM extension gallery

Figure 18.2 install VM extensions from Gallery.

Figure 18.3 List of available VM extensions.

Figure 18.4 List of extensions installed on a VM.

Azure and DevOps ◾ 485

Once the Custom Script Extension has been installed, you can start to pull down additional
PowerShell scripts from your Azure Storage account and execute them. In this case, I have uploaded
a simple PowerShell script that simply prints “Hello World” to the output stream:

Host-Write "Hello World!"

Assume the script has been uploaded to my BLOB container powershell under my haishigateway
account, then I can use Set-AzureVMCustomScriptExtension command to launch the script
and update my virtual machine:

Set-AzureVMCustomScriptExtension -ContainerName powershell
-StorageAccountName haishigateway -FileName HelloWorld.ps1 -VM $vm
-ReferenceName 'CustomScriptExtension' | Update-AzureVM -Verbose

The output of this command is shown in Figure 18.6.
To get the execution result, which can be written to either Stdout stream and/or StdErr stream,

you need to refresh your virtual machine reference and then read the script execution result from
its ResourceExtensionStatusList.ExtensionSettingStatus.SubStatusList property, as shown
in Figure 18.7.

18.2.4 DSC, Puppet, and Chef
Desired state configuration (DSC), Puppet, and Chef are all configuration automation systems.
They allow you to choose desired states for your resources, and they make sure your requirements
are met. With these systems, configurations are centralized, and configuration updates are either
pushed from a server or periodically pulled by agents installed on target machines.

Figure 18.6 output of custom script run.

Figure 18.7 Retrieve script execution results.

Figure 18.5 install Custom Script extension.

486 ◾ Zen of Cloud

You may have noticed that both Puppet Agent and Chef Client are provided as VM
Extensions (see Figure 18.1). DSC is part of PowerShell 4, and your configurations can be
applied via mechanisms such as the Custom Script Extension we introduced in the previous
section.

As we have discussed at the beginning of this chapter, being able to capture and automatically
reinforce infrastructural requirements across different environments is one of the key enabling
technologies for DevOps. Unfortunately, we cannot cover these systems here as each deserves
an entire book. Interested readers can visit the author’s blog (http://blog.haishibai.com) to find
several tutorials on these technologies.

18.3 new Portal
Early in 2014, a new Microsoft Portal was put into preview. Existing Azure subscribers can visit
https://portal.azure.com/microsoft.onmicrosoft.com to access the new portal (Figure 18.8).

The new portal looks fairly different from the current portal. The current portal design is
resource oriented, where you can provision, manage, and monitor your Azure resources with ease.
The new portal focuses on your applications instead of scattered resources. When you deploy an
application to cloud, you probably need to provision a bunch of related resources, such as a web
server, an application server, and a database. In the current portal, you cannot really treat them as
a single unit. However, the new portal supports the concept of Resource Groups, which allow you
to manage a group of related cloud resources as a single unit.

Figure 18.8 Microsoft Azure Preview Portal.

Azure and DevOps ◾ 487

The new portal is also highly customizable. You can manage your home page tiles just as you
can do on a Windows 8 PC or Windows phone. You can pin everything related to your application
on the home page so that you can have a consolidated view of your application.

Another concept of the new portal is Journey. When you perform operations, the screen keeps
expanding to the right, guiding you through multistep operations and revealing more and more
relevant information (see Figure 18.9). And as you complete operations, you are brought back
toward the left till you return to the home page. A Journey is saved across browser sessions. So the
next time you log in, or open the portal from a different machine, you can pick up from where
you left off.

The new portal provides strong support for DevOps. It is fully integrated with Visual Studio
Online, Azure monitoring, billing, and various other services so that you can gain incredible
insights into every aspect of your application. The dynamic UI may seem a little intimidating at
the beginning, but once you have tried out a couple of operations, you will find out that the new
portal is really easy to use and can become a vital tool for your DevOps scenarios.

18.4 Zen of Cloud
The core concept of cloud is to separate business applications from underlying infrastructures. The
value of cloud resides in reduced operation cost, improved quality of service, and unprecedented
agility. The opportunity brought by cloud is the innovations that can happen once applications
are freed from the constraints of infrastructures. Finally, the future of cloud is Ubiquitous Cloud
promoting Ubiquitous Computing to the next level, where the real world and the cyber world
merge into one.

No matter how technology evolves, at the end, people want the required functionalities to be
delivered and to remain accessible. The separation of applications and infrastructure allows appli-
cation and service developers to better focus on developing core business values, without having to
worry about how to tailor the application for particular platforms. It is foreseeable that in the near
future, local data centers, or even single server boxes, will adopt the same infrastructure designs
as those for cloud platforms. The parity between cloud, local systems, and even mobile systems
unifies the application ecosystem so that an application can be written once and be made available
everywhere. An application or a service can be migrated freely among on-premises datacenters,
private clouds, community clouds, and public clouds. Choosing a hosting environment will no
longer be an architectural decision, but just an operational decision.

For many software developers, the key for adopting cloud is the shift in mindset from scaling
out to scaling up, from controlled environment to dynamically composed environment, and from

Figure 18.9 A Journey on Azure portal.

488 ◾ Zen of Cloud

single-instance reliability to collective reliability. None of these concepts are new. Actually, experi-
enced large-scale system designers and developers have been doing these things for years. It is just
that they are getting the public’s long-overdue attention now.

The real revolutionary changes brought by cloud reside in the area of Big Data and Internet
of Things (IoT). Both Big Data and IoT need the capability of large scale, highly available data
acquisition, transmission, storage, and manipulation. Cloud provides all of these. It infuses new,
potent, infinite energy into Big Data and IoT development, making them both thrive on cloud.

Cloud is still young, and the developments in the field have been phenomenal. We hope this
book provides some practical help along your cloud journey, and we wish you great success with
your cloud projects. Thank you!

489

Bibliography

Bertocci, V. Programming Windows Identity Foundation. Redmond, WA: Microsoft Press, 2011.
Brown, J. W. Anti Patterns. New York: Wiley, 1998.
Dobson, S. M. Streetwise Project Management. Avon, MA: Adams Media Corporation, 2003.
Erl, T. SOA Design Patterns. Upper Saddle River, NJ: Prentice Hall, 2008.
Ferraiolo, D. F., Kuhn, D. R., Chandramouli, R. Role-Based Access Control, 2nd edition. Norwood, MA:

Artech House Publishers, 2007.
Frithey, G., Sajal, D. SQL Server 2008 Query Performance Tuning Distilled. New York: Apress, 2009.
Galloway, J. et al. Professional ASP.NET MVC 4. Indianapolis, IN: John Wiley & Sons, Inc., 2012.
Hohpe, G., B. Woolf. Enterprise Integration Patterns. Boston, MA: Addison Wesley, 2004.
Microsoft. A Guide to Claims-Based Identity and Access Control. Redmond, WA: Microsoft, 2010.
Microsoft. MSDN online documentations. [Online] Microsoft, 2013a. http://msdn.microsoft.com, accessed

May 12, 2013.
Microsoft. Windows azure. [Online] Microsoft, 2013b. http://www.windowsazure.com, accessed May 12,

2013.
Sommerville, I. Software Engineering. Upper Saddle River, NJ: Pearson Education Ltd., 2001.

Information Technology

This book explains the various concepts of Azure in a logical and clear manner. ... The
book consists of 69 complete, end-to-end examples that provide step-by-step guidance on
implementing typical cloud-based scenarios. The examples cover a wide range of application
types and technologies with different levels of difficulties.

—Pierre Masai, CIO of Toyota Motor Europe

Zen of Cloud: Learning Cloud Computing by Examples on Microsoft Azure provides
comprehensive coverage of the essential theories behind cloud computing and the Windows Azure
cloud platform. Sharing the author’s insights gained while working at Microsoft’s headquarters,
it presents nearly 70 end-to-end examples with step-by-step guidance on implementing typical
cloud-based scenarios.

The book is organized into four sections: cloud service fundamentals, cloud solutions, devices and
cloud, and system integration and project management. Each chapter contains detailed exercises
that provide readers with the opportunity to develop valuable hands-on skills in cloud service
development.

•	Explains how to prepare for Microsoft Azure development and how to use
Microsoft Azure Management Portal

•	Provides best practices for designing cloud-based applications

•	 Includes online access to updated examples and answers to the exercises

Supplying comprehensive coverage of the Windows Azure cloud platform, the book provides a
practical understanding and powerful tips that readers can immediately apply to their own work—
making it ideal for cloud system developers, architects, and IT professionals. Organized into easily
digestible sessions, it is also ideal for use in instructional settings.

ISBN: 978-1-4822-1580-9

9 781482 215809

90000
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

Zen of Cloud

Learning Cloud Computing by Examples
on Microsoft Azure

Haishi Bai

Zen of Cloud

B
ai

w w w . c r c p r e s s . c o m

K22024

K22024 cvr mech.indd 1 7/15/14 9:08 AM

	Front Cover
	Contents
	Foreword
	Chapter 1: Overview of Cloud Computing
	Chapter 2: Building Websites on the Cloud
	Chapter 3: Cloud Service Fundamentals
	Chapter 4: Advanced Cloud Service
	Chapter 5: Data Storage : Relational Database
	Chapter 6: Data Storage : Storage Services
	Chapter 7: Virtual Machines and Virtual Networks
	Chapter 8: Cloud Solution Architecture
	Chapter 9: High-Availability Design
	Chapter 10: High-Reliability Design
	Chapter 11: High-Performance Design
	Chapter 12: Claim-Based Architecture
	Chapter 13: Mobile Service
	Chapter 14: Internet of Things
	Chapter 15: Message-Based System Integration
	Chapter 16: Source Control and Tests with Visual Studio Online
	Chapter 17: Scripting and Automation
	Chapter 18: Azure and DevOps
	Bibliography
	Back Cover

